Results 11  20
of
169
On the Foundations of Final Coalgebra Semantics: nonwellfounded sets, partial orders, metric spaces
, 1998
"... ..."
Nuclear and Trace Ideals in Tensored *Categories
, 1998
"... We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed structure associated with the category of relations does not generalize directly, instead one obtains nuclear ideals. Most tensored categories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact closed tensored categories, all morphisms are nuclear, and in the tensored category of Hilbert spaces, the nuclear morphisms are the HilbertSchmidt maps. We also introduce two new examples of tensored categories, in which integration plays the role of composition. In the first, mor...
Formalising Ontologies and Their Relations
 In Proceedings of DEXA’99
, 1999
"... . Ontologies allow the abstract conceptualisation of domains, but a given domain can be conceptualised through many different ontologies, which can be problematic when ontologies are used to support knowledge sharing. We present a formal account of ontologies that is intended to support knowledg ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
. Ontologies allow the abstract conceptualisation of domains, but a given domain can be conceptualised through many different ontologies, which can be problematic when ontologies are used to support knowledge sharing. We present a formal account of ontologies that is intended to support knowledge sharing through precise characterisations of relationships such as compatibility and refinement. We take an algebraic approach, in which ontologies are presented as logical theories. This allows us to characterise relations between ontologies as relations between their classes of models. A major result is cocompleteness of specifications, which supports merging of ontologies across shared subontologies. 1 Introduction Over the last decade ontologies  best characterised as explicit specifications of a conceptualisation of a domain [17]  have become increasingly important in the design and development of knowledge based systems, and for knowledge representations generally. They...
Models for NamePassing Processes: Interleaving and Causal
 In Proceedings of LICS 2000: the 15th IEEE Symposium on Logic in Computer Science (Santa Barbara
, 2000
"... We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we de ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we define Indexed Labelled Asynchronous Transition Systems, smoothly generalizing both our interleaving model and the standard Asynchronous Transition Systems model for CCSlike calculi. In each case we relate a denotational semantics to an operational view, for bisimulation and causal bisimulation respectively. We establish completeness properties of, and adjunctions between, categories of the two models. Alternative indexing structures and possible applications are also discussed. These are first steps towards a uniform understanding of the semantics and operations of namepassing calculi.
Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding
, 1996
"... Generalized metric spaces are a common generalization of preorders and ordinary metric spaces (Lawvere 1973). Combining Lawvere's (1973) enrichedcategorical and Smyth' (1988, 1991) topological view on generalized metric spaces, it is shown how to construct 1. completion, 2. topology, and 3. powerdo ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
Generalized metric spaces are a common generalization of preorders and ordinary metric spaces (Lawvere 1973). Combining Lawvere's (1973) enrichedcategorical and Smyth' (1988, 1991) topological view on generalized metric spaces, it is shown how to construct 1. completion, 2. topology, and 3. powerdomains for generalized metric spaces. Restricted to the special cases of preorders and ordinary metric spaces, these constructions yield, respectively: 1. chain completion and Cauchy completion; 2. the Alexandroff and the Scott topology, and the fflball topology; 3. lower, upper, and convex powerdomains, and the hyperspace of compact subsets. All constructions are formulated in terms of (a metric version of) the Yoneda (1954) embedding.
A Logical View Of Concurrent Constraint Programming
, 1995
"... . Concurrent Constraint Programming (CCP) has been the subject of growing interest as the focus of a new paradigm for concurrent computation. Like logic programming it claims close relations to logic. In fact CCP languages are logics in a certain sense that we make precise in this paper. In recent ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
. Concurrent Constraint Programming (CCP) has been the subject of growing interest as the focus of a new paradigm for concurrent computation. Like logic programming it claims close relations to logic. In fact CCP languages are logics in a certain sense that we make precise in this paper. In recent work it was shown that the denotational semantics of determinate concurrent constraint programming languages forms a fibred categorical structure called a hyperdoctrine, which is used as the basis of the categorical formulation of firstorder logic. What this shows is that the combinators of determinate CCP can be viewed as logical connectives. In this paper we extend these ideas to the operational semantics of such languages and thus make available similar analogies for a much broader variety of languages including indeterminate CCP languages and concurrent blockstructured imperative languages. CR Classification: F3.1, F3.2, D1.3, D3.3 Key words: Concurrent constraint programming, simula...
Finality Regained  A Coalgebraic Study of Scottsets and Multisets
 Arch. Math. Logic
, 1999
"... In this paper we study iterated circular multisets in a coalgebraic framework. We will produce two essentially different universes of suchsets. The unisets of the first universe will be shown to be precisely the sets of the Scott universe. The unisets of the second universe will be precisely the ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
In this paper we study iterated circular multisets in a coalgebraic framework. We will produce two essentially different universes of suchsets. The unisets of the first universe will be shown to be precisely the sets of the Scott universe. The unisets of the second universe will be precisely the sets of the AFAuniverse. Wewillhave a closer look into the connection of the iterated circular multisets and arbitrary trees. Key words: multiset, nonwellfounded set, Scottuniverse, AFA, coalgebra, modal logic, graded modalities MSC2000 codes: 03B45, 03E65, 03E70, 18A15, 18A22, 18B05, 68Q85 1 Contents 1 Introduction 3 1.1 Multisets on a Given Domain . . . . . . . . . . . . . . . . . . . . 3 1.2 Iterated and Circular Multisets . . . . . . . . . . . . . . . . . . . 6 1.3 Organization of the Paper . . . . . . . . . . . . . . . . . . . . . . 7 2 Prerequisites 8 2.1 Coalgebras and Morphisms . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 A Prototype: Pow . . . . . . . . . . . . . . . ...
The regularlocallycompact coreflection of stably locally compact locale
 Journal of Pure and Applied Algebra
, 2001
"... The Scott continuous nuclei form a subframe of the frame of all nuclei. We refer to this subframe as the patch frame. We show that the patch construction exhibits (i) the category of regular locally compact locales and perfect maps as a coreflective subcategory of the category of stably locally comp ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
The Scott continuous nuclei form a subframe of the frame of all nuclei. We refer to this subframe as the patch frame. We show that the patch construction exhibits (i) the category of regular locally compact locales and perfect maps as a coreflective subcategory of the category of stably locally compact locales and perfect maps,
Retrieving Library Functions By Unifying Types Modulo Linear Isomorphism
, 1992
"... An improved method to retrieve a library function via its Hindley/Milner type is described. Previous retrieval systems have identified types that are isomorphic in any Cartesian closed category (CCC), and have retrieved library functions of types that are either isomorphic to the query, or have ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
An improved method to retrieve a library function via its Hindley/Milner type is described. Previous retrieval systems have identified types that are isomorphic in any Cartesian closed category (CCC), and have retrieved library functions of types that are either isomorphic to the query, or have instances that are. Sometimes it is useful to instantiate the query too, which requires unification modulo isomorphism. Although unifiability modulo CCCisomorphism is undecidable, it is decidable modulo linear isomorphism, that is, isomorphism in any symmetric monoidal closed (SMC) category. We argue that the linear isomorphism should retrieve library functions almost as well as CCCisomorphism, and we report experiments with such retrieval from the Lazy ML library. When unification is used, the system retrieves too many functions, but sorting by the sizes of the unifiers tends to place the most relevant functions first. R'esum'e Ce papier pr'esente une nouvelle m'ethode pour la re...