Results 1  10
of
268
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract

Cited by 386 (41 self)
 Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (NonWellFounded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of nonwellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
Finiteness spaces
 Mathematical Structures in Computer Science
, 1987
"... We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite dif ..."
Abstract

Cited by 71 (15 self)
 Add to MetaCart
(Show Context)
We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite different from the usual models of linear logic (coherence semantics, hypercoherence semantics, the various existing game semantics...). In particular, the standard fixpoint operators used for defining the general recursive functions are not finitary, although the primitive recursion operators are. This model can be considered as a discrete version of the Köthe space semantics introduced in a previous paper: we show how, given a field, each finiteness space gives rise to a vector space endowed with a linear topology, a notion introduced by Lefschetz in 1942, and we study the corresponding model where morphisms are linear continuous maps (a version of Girard’s quantitative semantics with coefficients in the field). We obtain in that way a new model of the recently introduced differential lambdacalculus. Notations. If S is a set, we denote by M(S) = N S the set of all multisets over S. If µ ∈ M(S), µ denotes the support of µ which is the set of all a ∈ S such that µ(a) ̸ = 0. A multiset is finite if it has a finite support. If a1,..., an are elements of some given set S, we denote by [a1,..., an] the corresponding multiset over S. The usual operations on natural numbers are extended to multisets pointwise. If (Si)i∈I are sets, we denote by πi the ith projection πi: ∏ j∈I Sj → Si.
Representing Layered Monads
 PROCEEDINGS OF THE TWENTYSIXTH ANNUAL ACM SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES
, 1999
"... There has already been considerable research on constructing modular, monadbased specications of computational effects (state, exceptions, nondeterminism, etc.) in programming languages. We present a simple framework in this tradition, based on a Churchstyle effecttyping system for an MLlike lan ..."
Abstract

Cited by 66 (2 self)
 Add to MetaCart
There has already been considerable research on constructing modular, monadbased specications of computational effects (state, exceptions, nondeterminism, etc.) in programming languages. We present a simple framework in this tradition, based on a Churchstyle effecttyping system for an MLlike language. The semantics of this language is formally dened by a series of monadic translations, each one expanding away a layer of effects. Such a layered specication is easy to reason about, but its direct implementation (whether by parameterized interpretation or by actual translation) is often prohibitively inefficient. By exploiting deeper semantic properties of monads, however, it is also possible to derive a vastly more efficient implementation: we show that each layer of eects can be uniformly simulated by continuationpassing, and further that multiple such layers can themselves be simulated by a standard semantics for call/cc and mutable state. Thus, even multieffect programs can be execu...
Initial Algebra and Final Coalgebra Semantics for Concurrency
, 1994
"... The aim of this paper is to relate initial algebra semantics and final coalgebra semantics. It is shown how these two approaches to the semantics of programming languages are each others dual, and some conditions are given under which they coincide. More precisely, it is shown how to derive initial ..."
Abstract

Cited by 56 (9 self)
 Add to MetaCart
(Show Context)
The aim of this paper is to relate initial algebra semantics and final coalgebra semantics. It is shown how these two approaches to the semantics of programming languages are each others dual, and some conditions are given under which they coincide. More precisely, it is shown how to derive initial semantics from final semantics, using the initiality and finality to ensure their equality. Moreover, many facts about congruences (on algebras) and (generalized) bisimulations (on coalgebras) are shown to be dual as well.
On the Foundations of Final Semantics: NonStandard Sets, Metric Spaces, Partial Orders
 PROCEEDINGS OF THE REX WORKSHOP ON SEMANTICS: FOUNDATIONS AND APPLICATIONS, VOLUME 666 OF LECTURE NOTES IN COMPUTER SCIENCE
, 1998
"... Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfixed point. They are ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
(Show Context)
Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfixed point. They are also used here for giving a new comprehensive presentation of the (still) nonstandard theory of nonwellfounded sets (as nonstandard sets are usually called). This paper is meant to provide a basis to a more general project aiming at a full exploitation of the finality of the domains in the semantics of programming languages  concurrent ones among them. Such a final semantics enjoys uniformity and generality. For instance, semantic observational equivalences like bisimulation can be derived as instances of a single `coalgebraic' definition (introduced elsewhere), which is parametric of the functor appearing in the domain equation. Some properties of this general form of equivalence are also studied in this paper.
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 48 (19 self)
 Add to MetaCart
(Show Context)
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
On Groupoid C∗Algebras, Persistent Homology and TimeFrequency Analysis
"... We study some topological aspects in timefrequency analysis in the context of dimensionality reduction using C ∗algebras and noncommutative topology. Our main objective is to propose and analyze new conceptual and algorithmic strategies for computing topological features of datasets arising in tim ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
(Show Context)
We study some topological aspects in timefrequency analysis in the context of dimensionality reduction using C ∗algebras and noncommutative topology. Our main objective is to propose and analyze new conceptual and algorithmic strategies for computing topological features of datasets arising in timefrequency analysis. The main result of our work is to illustrate how noncommutative C ∗algebras and the concept of Morita equivalence can be applied as a new type of analysis layer in signal processing. From a conceptual point of view, we use groupoid C∗algebras constructed with timefrequency data in order to study a given signal. From a computational point of view, we consider persistent homology as an algorithmic tool for estimating topological properties in timefrequency analysis. The usage of C∗algebras in our environment, together with the problem of designing computational algorithms, naturally leads to our proposal of using AFalgebras in the persistent homology setting. Finally, a computational toy example is presented, illustrating some elementary aspects of our framework. Due to the interdisciplinary nature
Concurrent Transition Systems
 Theoretical Computer Science
, 1989
"... : Concurrent transition systems (CTS's), are ordinary nondeterministic transition systems that have been equipped with additional concurrency information, specified in terms of a binary residual operation on transitions. Each CTS C freely generates a complete CTS or computation category C , ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
(Show Context)
: Concurrent transition systems (CTS's), are ordinary nondeterministic transition systems that have been equipped with additional concurrency information, specified in terms of a binary residual operation on transitions. Each CTS C freely generates a complete CTS or computation category C , whose arrows are equivalence classes of finite computation sequences, modulo a congruence induced by the concurrency information. The categorical composition on C induces a "prefix" partial order on its arrows, and the computations of C are conveniently defined to be the ideals of this partial order. The definition of computations as ideals has some pleasant properties, one of which is that the notion of a maximal ideal in certain circumstances can serve as a replacement for the more troublesome notion of a fair computation sequence. To illustrate the utility of CTS's, we use them to define and investigate a dataflowlike model of concurrent computation. The model consists of machines, which ...