Results 1  10
of
75
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 301 (15 self)
 Add to MetaCart
The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, networks and graphs, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, and power networks). The collection meets a vital need that artificiallygenerated matrices cannot meet, and is widely used by the sparse matrix algorithms community for the development and performance evaluation of sparse matrix algorithms. The collection includes software for accessing and managing the collection, from MATLAB, Fortran, and C.
A supernodal approach to sparse partial pivoting
 SIAM Journal on Matrix Analysis and Applications
, 1999
"... We investigate several ways to improve the performance of sparse LU factorization with partial pivoting, as used to solve unsymmetric linear systems. To perform most of the numerical computation in dense matrix kernels, we introduce the notion of unsymmetric supernodes. To better exploit the memory ..."
Abstract

Cited by 188 (22 self)
 Add to MetaCart
We investigate several ways to improve the performance of sparse LU factorization with partial pivoting, as used to solve unsymmetric linear systems. To perform most of the numerical computation in dense matrix kernels, we introduce the notion of unsymmetric supernodes. To better exploit the memory hierarchy, weintroduce unsymmetric supernodepanel updates and twodimensional data partitioning. To speed up symbolic factorization, we use Gilbert and Peierls's depth rst search with Eisenstat and Liu's symmetric structural reductions. We have implemented a sparse LU code using all these ideas. We present experiments demonstrating that it is signi cantly faster than earlier partial pivoting codes. We also compare performance with Umfpack, which uses a multifrontal approach; our code is usually faster.
Solving semidefinitequadraticlinear programs using SDPT3
 MATHEMATICAL PROGRAMMING
, 2003
"... This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primaldual pathfollowing algorithm ..."
Abstract

Cited by 139 (18 self)
 Add to MetaCart
This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primaldual pathfollowing algorithms. The software developed by the authors uses Mehrotratype predictorcorrector variants of interiorpoint methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported.
Solving unsymmetric sparse systems of linear equations with PARDISO
 Journal of Future Generation Computer Systems
, 2004
"... Supernode partitioning for unsymmetric matrices together with complete block diagonal supernode pivoting and asynchronous computation can achieve high gigaflop rates for parallel sparse LU factorization on shared memory parallel computers. The progress in weighted graph matching algorithms helps to ..."
Abstract

Cited by 91 (8 self)
 Add to MetaCart
Supernode partitioning for unsymmetric matrices together with complete block diagonal supernode pivoting and asynchronous computation can achieve high gigaflop rates for parallel sparse LU factorization on shared memory parallel computers. The progress in weighted graph matching algorithms helps to extend these concepts further and unsymmetric prepermutation of rows is used to place large matrix entries on the diagonal. Complete block diagonal supernode pivoting allows dynamical interchanges of columns and rows during the factorization process. The level3 BLAS efficiency is retained and an advanced twolevel left–right looking scheduling scheme results in good speedup on SMP machines. These algorithms have been integrated into the recent unsymmetric version of the PARDISO solver. Experiments demonstrate that a wide set of unsymmetric linear systems can be solved and high performance is consistently achieved for large sparse unsymmetric matrices from real world applications. Key words: Computational sciences, numerical linear algebra, direct solver, unsymmetric linear systems
Tuning the performance of I/O intensive parallel applications
 In Fourth Workshop on Input/Output in Parallel and Distributed Systems (Philadelphia
, 1996
"... Getting good I/O performance from parallel programs is a critical problem for many application domains. In this paper, we report our experience tuning the I/O performance of four application programs from the areas of satellitedata processing and linear algebra. After tuning, three of the four appl ..."
Abstract

Cited by 70 (24 self)
 Add to MetaCart
Getting good I/O performance from parallel programs is a critical problem for many application domains. In this paper, we report our experience tuning the I/O performance of four application programs from the areas of satellitedata processing and linear algebra. After tuning, three of the four applications achieve applicationlevel I/O rates of over 100 MB/s on 16 processors. The total volume of I/O required by the programs ranged from about 75 MB to over 200 GB. We report the lessons learned in achieving high I/O performance from these applications, including the need for code restructuring, local disks on every node and knowledge of future I/O requests. We also report our experience on achieving high performance on peertopeer con gurations. Finally, wecomment on the necessity of complex I/O interfaces like collective I/O and strided requests to achieve high performance. 1
Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate
 ACM Transactions on Mathematical Software
, 2008
"... CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for b ..."
Abstract

Cited by 53 (7 self)
 Add to MetaCart
CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky factorization relies on LAPACK and the Level3 BLAS, and obtains a substantial fraction of the peak performance of the BLAS. Both real and complex matrices are supported. CHOLMOD is written in ANSI/ISO C, with both C and MATLAB TM interfaces. It appears in MATLAB 7.2 as x=A\b when A is sparse symmetric positive definite, as well as in several other sparse matrix functions.
Covariance tapering for interpolation of large spatial datasets
 Journal of Computational and Graphical Statistics
, 2006
"... Interpolation of a spatially correlated random process is used in many areas. The best unbiased linear predictor, often called kriging predictor in geostatistical science, requires the solution of a large linear system based on the covariance matrix of the observations. In this article, we show that ..."
Abstract

Cited by 39 (7 self)
 Add to MetaCart
Interpolation of a spatially correlated random process is used in many areas. The best unbiased linear predictor, often called kriging predictor in geostatistical science, requires the solution of a large linear system based on the covariance matrix of the observations. In this article, we show that tapering the correct covariance matrix with an appropriate compactly supported covariance function reduces the computational burden significantly and still has an asymptotic optimal mean squared error. The effect of tapering is to create a sparse approximate linear system that can then be solved using sparse matrix algorithms. Extensive Monte Carlo simulations support the theoretical results. An application to a large climatological precipitation dataset is presented as a concrete practical illustration.
On the implementation of an algorithm for largescale equality constrained optimization
 SIAM Journal on Optimization
, 1998
"... Abstract. This paper describes a software implementation of Byrd and Omojokun’s trust region algorithm for solving nonlinear equality constrained optimization problems. The code is designed for the efficient solution of large problems and provides the user with a variety of linear algebra techniques ..."
Abstract

Cited by 38 (11 self)
 Add to MetaCart
Abstract. This paper describes a software implementation of Byrd and Omojokun’s trust region algorithm for solving nonlinear equality constrained optimization problems. The code is designed for the efficient solution of large problems and provides the user with a variety of linear algebra techniques for solving the subproblems occurring in the algorithm. Second derivative information can be used, but when it is not available, limited memory quasiNewton approximations are made. The performance of the code is studied using a set of difficult test problems from the CUTE collection.
Sparse Gaussian Elimination on High Performance Computers
, 1996
"... This dissertation presents new techniques for solving large sparse unsymmetric linear systems on high performance computers, using Gaussian elimination with partial pivoting. The efficiencies of the new algorithms are demonstrated for matrices from various fields and for a variety of high performan ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
This dissertation presents new techniques for solving large sparse unsymmetric linear systems on high performance computers, using Gaussian elimination with partial pivoting. The efficiencies of the new algorithms are demonstrated for matrices from various fields and for a variety of high performance machines. In the first part we discuss optimizations of a sequential algorithm to exploit the memory hierarchies that exist in most RISCbased superscalar computers. We begin with the leftlooking supernodecolumn algorithm by Eisenstat, Gilbert and Liu, which includes Eisenstat and Liu's symmetric structural reduction for fast symbolic factorization. Our key contribution is to develop both numeric and symbolic schemes to perform supernodepanel updates to achieve better data reuse in cache and floatingpoint register...
PCx User Guide
, 1997
"... We describe the code PCx, a primaldual interiorpoint code for linear programming. Information is given about problem formulation and the underlying algorithm, along with instructions for installing, invoking, and using the code. Computational results on standard test problems are tabulated. The cu ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
We describe the code PCx, a primaldual interiorpoint code for linear programming. Information is given about problem formulation and the underlying algorithm, along with instructions for installing, invoking, and using the code. Computational results on standard test problems are tabulated. The current version number is 1.0. Key words: linear programming, interiorpoint methods, software. 1 This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract W31109Eng 38. 1 Introduction PCx is a linear programming solver developed at the Optimization Technology Center at Argonne National Laboratory and Northwestern University. It implements a variant of Mehrotra's predictorcorrector algorithm [6] with the higherorder correction strategy of Gondzio [3]. This primaldual approach has proved to be the most efficient interiorpoint method for gene...