Results 1  10
of
147
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract

Cited by 289 (15 self)
 Add to MetaCart
Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent under strong additional assumptions, which, as we demonstrate, are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering in practical applications. We believe that methods used in our analysis will provide a basis for future exploration of Laplacianbased methods in a statistical setting.
A Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems
 Experience
, 1994
"... Unstructured meshes are used in many largescale scientific and engineering problems, including finitevolume methods for computational fluid dynamics and finiteelement methods for structural analysis. If unstructured problems such as these are to be solved on distributedmemory parallel computers, ..."
Abstract

Cited by 277 (7 self)
 Add to MetaCart
Unstructured meshes are used in many largescale scientific and engineering problems, including finitevolume methods for computational fluid dynamics and finiteelement methods for structural analysis. If unstructured problems such as these are to be solved on distributedmemory parallel computers, their data structures must be partitioned and distributed across processors; if they are to be solved efficiently, the partitioning must maximize load balance and minimize interprocessor communication. Recently the recursive spectral bisection method (RSB) has been shown to be very effective for such partitioning problems compared to alternative methods. Unfortunately, RSB in its simplest form is rather expensive. In this report we shall describe a multilevel implementation of RSB that can attain about an orderofmagnitude improvement in run time on typical examples. Keywords: graph partitioning, domain decomposition, MIMD machines, multilevel algorithm, spectral bisection, sp...
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 188 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently  those with shortrange forces where the neighbors of each atom change rapidly. They can be implemented on any distributedmemory parallel machine which allows for messagepassing of data between independently executing processors. The algorithms are tested on a standard LennardJones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers  the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray YMP and C90 algorithm shows that the current generation of parallel machines is competitive with conventi...
Multiclass spectral clustering
 In Proc. Int. Conf. Computer Vision
, 2003
"... We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We t ..."
Abstract

Cited by 181 (7 self)
 Add to MetaCart
We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We then solve an optimal discretization problem, which seeks a discrete solution closest to the continuous optima. The discretization is efficiently computed in an iterative fashion using singular value decomposition and nonmaximum suppression. The resulting discrete solutions are nearly globaloptimal. Our method is robust to random initialization and converges faster than other clustering methods. Experiments on real image segmentation are reported. optima consist not only of the eigenvectors, but of a whole family spanned by the eigenvectors through orthonormal transforms. The goal is to find the right orthonormal transform that leads to a discretization. ˜X normalize
Spectral Partitioning Works: Planar graphs and finite element meshes
 In IEEE Symposium on Foundations of Computer Science
, 1996
"... Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extr ..."
Abstract

Cited by 144 (8 self)
 Add to MetaCart
Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on boundeddegree planar graphs and finite element meshes the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O( p n) for boundeddegree planar graphs and twodimensional meshes and O i n 1=d j for wellshaped ddimensional meshes. The heart of our analysis is an upper bound on the secondsmallest eigenvalues of the Laplacian matrices of these graphs. 1. Introduction Spectral partitioning has become one of the mos...
METIS  Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0
, 1995
"... this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used ..."
Abstract

Cited by 122 (5 self)
 Add to MetaCart
this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used by METIS. Section 6 describes the standalone library that implements the various algorithms implemented in METIS. Section 7 describes the system requirements for the METIS package. Appendix A describes and compares various graph partitioning algorithms that are extensively used.
Geometric Mesh Partitioning: Implementation and Experiments
"... We investigate a method of dividing an irregular mesh into equalsized pieces with few interconnecting edges. The method’s novel feature is that it exploits the geometric coordinates of the mesh vertices. It is based on theoretical work of Miller, Teng, Thurston, and Vavasis, who showed that certain ..."
Abstract

Cited by 102 (19 self)
 Add to MetaCart
We investigate a method of dividing an irregular mesh into equalsized pieces with few interconnecting edges. The method’s novel feature is that it exploits the geometric coordinates of the mesh vertices. It is based on theoretical work of Miller, Teng, Thurston, and Vavasis, who showed that certain classes of “wellshaped” finite element meshes have good separators. The geometric method is quite simple to implement: we describe a Matlab code for it in some detail. The method is also quite efficient and effective: we compare it with some other methods, including spectral bisection.
Some Applications of Laplace Eigenvalues of Graphs
 GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, VOLUME 497 OF NATO ASI SERIES C
, 1997
"... In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of ..."
Abstract

Cited by 90 (0 self)
 Add to MetaCart
In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of graphs, the maxcut problem and its relation to semidefinite programming, rapid mixing of Markov chains, and to extensions of the results to infinite graphs.
How Good is Recursive Bisection?
 SIAM J. Sci. Comput
, 1995
"... . The most commonly used pway partitioning method is recursive bisection (RB). It first divides a graph or a mesh into two equal sized pieces, by a "good" bisection algorithm, and then recursively divides the two pieces. Ideally, we would like to use an optimal bisection algorithm. Because the opti ..."
Abstract

Cited by 87 (4 self)
 Add to MetaCart
. The most commonly used pway partitioning method is recursive bisection (RB). It first divides a graph or a mesh into two equal sized pieces, by a "good" bisection algorithm, and then recursively divides the two pieces. Ideally, we would like to use an optimal bisection algorithm. Because the optimal bisection problem, that partitions a graph into two equal sized subgraphs to minimize the number of edges cut, is NPcomplete, practical RB algorithms use more efficient heuristics in place of an optimal bisection algorithm. Most such heuristics are designed to find the best possible bisection within allowed time. We show that the recursive bisection method, even when an optimal bisection algorithm is assumed, may produce a pway partition that is very far way from the optimal one. Our negative result is complemented by two positive ones: First we show that for some important classes of graphs that occur in practical applications, such as wellshaped finite element and finite difference...