Results 1 - 10
of
392
DART: Directed automated random testing
- In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static source-code parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract
-
Cited by 843 (42 self)
- Add to MetaCart
(Show Context)
We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static source-code parsing; (2) automatic generation of a test driver for this interface that performs random testing to simulate the most general environment the program can operate in; and (3) dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths. Together, these three techniques constitute Directed Automated Random Testing,or DART for short. The main strength of DART is thus that testing can be performed completely automatically on any program that compiles – there is no need to write any test driver or harness code. During testing, DART detects standard errors such as program crashes, assertion violations, and non-termination. Preliminary experiments to unit test several examples of C programs are very encouraging.
Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software
- In Network and Distributed Systems Security Symposium
, 2005
"... Software vulnerabilities have had a devastating effect on the Internet. Worms such as CodeRed and Slammer can compromise hundreds of thousands of hosts within hours or even minutes, and cause millions of dollars of damage [32, 51]. To successfully combat these fast automatic Internet attacks, we nee ..."
Abstract
-
Cited by 647 (32 self)
- Add to MetaCart
(Show Context)
Software vulnerabilities have had a devastating effect on the Internet. Worms such as CodeRed and Slammer can compromise hundreds of thousands of hosts within hours or even minutes, and cause millions of dollars of damage [32, 51]. To successfully combat these fast automatic Internet attacks, we need fast automatic attack detection and filtering mechanisms. In this paper we propose dynamic taint analysis for automatic detection and analysis of overwrite attacks, which include most types of exploits. This approach does not need source code or special compilation for the monitored program, and hence works on commodity software. To demonstrate this idea, we have implemented TaintCheck, a mechanism that can perform dynamic taint analysis by performing binary rewriting at run time. We show that TaintCheck reliably detects most types of exploits. We found that TaintCheck produced no false positives for any of the many different programs that we tested. Further, we show how we can use a two-tiered approach to build a hybrid exploit detector that enjoys the same accuracy as TaintCheck but have extremely low performance overhead. Finally, we propose a new type of automatic signature generation—semanticanalysis based signature generation. We show that by backtracing the chain of tainted data structure rooted at the detection point, TaintCheck can automatically identify which original flow and which part of the original flow have caused the attack and identify important invariants of the payload that can be used as signatures. Semantic-analysis based signature generation can be more accurate, resilient against polymorphic worms, and robust to attacks exploiting polymorphism than the pattern-extraction based signature generation methods.
CIL: Intermediate language and tools for analysis and transformation of C programs
- In International Conference on Compiler Construction
, 2002
"... Abstract. This paper describes the CIntermediate Language: a highlevel representation along with a set of tools that permit easy analysis and source-to-source transformation of C programs. Compared to C, CIL has fewer constructs. It breaks down certain complicated constructs of C into simpler ones, ..."
Abstract
-
Cited by 533 (11 self)
- Add to MetaCart
(Show Context)
Abstract. This paper describes the CIntermediate Language: a highlevel representation along with a set of tools that permit easy analysis and source-to-source transformation of C programs. Compared to C, CIL has fewer constructs. It breaks down certain complicated constructs of C into simpler ones, and thus it works at a lower level than abstract-syntax trees. But CIL is also more high-level than typical intermediate languages (e.g., three-address code) designed for compilation. As a result, what we have is a representation that makes it easy to analyze and manipulate C programs, and emit them in a form that resembles the original source. Moreover, it comes with a front-end that translates to CIL not only ANSI C programs but also those using Microsoft C or GNU C extensions. We describe the structure of CIL with a focus on how it disambiguates those features of C that we found to be most confusing for program analysis and transformation. We also describe a whole-program merger based on structural type equality, allowing a complete project to be viewed as a single compilation unit. As a representative application of CIL, we show a transformation aimed at making code immune to stack-smashing attacks. We are currently using CIL as part of a system that analyzes and instruments C programs with run-time checks to ensure type safety. CIL has served us very well in this project, and we believe it can usefully be applied in other situations as well. 1
Flow-Sensitive Type Qualifiers
, 2002
"... We present a system for extending standard type systems with flow-sensitive type qualifiers. Users annotate their programs with type qualifiers, and inference checks that the annotations are correct. In our system only the type qualifiers are modeled flow-sensitively - the underlying standard types ..."
Abstract
-
Cited by 409 (28 self)
- Add to MetaCart
(Show Context)
We present a system for extending standard type systems with flow-sensitive type qualifiers. Users annotate their programs with type qualifiers, and inference checks that the annotations are correct. In our system only the type qualifiers are modeled flow-sensitively - the underlying standard types are unchanged, which allows us to obtain an efficient constraint-based inference algorithm that integrates flow-insensitive alias analysis, effect inference, and ideas from linear type systems to support strong updates. We demonstrate the usefulness of flow-sensitive type qualifiers by finding a number of new locking bugs in the Linux kernel.
Cyclone: A safe dialect of C
"... Cyclone is a safe dialect of C. It has been designed from the ground up to prevent the buffer overflows, format string attacks, and memory management errors that are common in C programs, while retaining C's syntax and semantics. This paper examines safety violations enabled by C's design ..."
Abstract
-
Cited by 401 (24 self)
- Add to MetaCart
(Show Context)
Cyclone is a safe dialect of C. It has been designed from the ground up to prevent the buffer overflows, format string attacks, and memory management errors that are common in C programs, while retaining C's syntax and semantics. This paper examines safety violations enabled by C's design, and shows how Cyclone avoids them, without giving up C's hallmark control over low-level details such as data representation and memory management.
Bug Isolation via Remote Program Sampling
- In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation
, 2003
"... We propose a low-overhead sampling infrastructure for gathering information from the executions experienced by a program 's user community. Several example applications illustrate ways to use sampled instrumentation to isolate bugs. Assertion-dense code can be transformed to share the cost of a ..."
Abstract
-
Cited by 335 (16 self)
- Add to MetaCart
(Show Context)
We propose a low-overhead sampling infrastructure for gathering information from the executions experienced by a program 's user community. Several example applications illustrate ways to use sampled instrumentation to isolate bugs. Assertion-dense code can be transformed to share the cost of assertions among many users. Lacking assertions, broad guesses can be made about predicates that predict program errors and a process of elimination used to whittle these down to the true bug. Finally, even for non-deterministic bugs such as memory corruption, statistical modeling based on logistic regression allows us to identify program behaviors that are strongly correlated with failure and are therefore likely places to look for the error.
Vigilante: End-to-End Containment of Internet Worm Epidemics
, 2008
"... Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. ..."
Abstract
-
Cited by 304 (6 self)
- Add to MetaCart
(Show Context)
Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. We propose Vigilante, a new end-to-end architecture to contain worms automatically that addresses these limitations. In Vigilante, hosts detect worms by instrumenting vulnerable programs to analyze infection attempts. We introduce dynamic data-flow analysis: a broad-coverage host-based algorithm that can detect unknown worms by tracking the flow of data from network messages and disallowing unsafe uses of this data. We also show how to integrate other host-based detection mechanisms into the Vigilante architecture. Upon detection, hosts generate self-certifying alerts (SCAs), a new type of security alert that can be inexpensively verified by any vulnerable host. Using SCAs, hosts can cooperate to contain an outbreak, without having to trust each other. Vigilante broadcasts SCAs over an overlay network that propagates alerts rapidly and resiliently. Hosts receiving an SCA protect themselves by generating filters with vulnerability condition slicing: an algorithm that performs dynamic analysis of the vulnerable program to identify control-flow conditions that lead
Secure Program Execution via Dynamic Information Flow Tracking
, 2004
"... Dynamic information flow tracking is a hardware mechanism to protect programs against malicious attacks by identifying spurious information flows and restricting the usage of spurious information. Every security attack to take control of a program needs to transfer the program’s control to malevolen ..."
Abstract
-
Cited by 271 (3 self)
- Add to MetaCart
(Show Context)
Dynamic information flow tracking is a hardware mechanism to protect programs against malicious attacks by identifying spurious information flows and restricting the usage of spurious information. Every security attack to take control of a program needs to transfer the program’s control to malevolent code. In our approach, the operating system identifies a set of input channels as spurious, and the processor tracks all information flows from those inputs. A broad range of attacks are effectively defeated by disallowing the spurious data to be used as instructions or jump target addresses. We describe two different security policies that track differing sets of dependencies. Implementing the first policy only incurs, on average, a memory overhead of 0.26 % and a performance degradation of 0.02%. This policy does not require any modification of executables. The stronger policy incurs, on average, a memory overhead of 4.5 % and a performance degradation of 0.8%, and requires binary annotation. 1
Securing Web Application Code by Static Analysis and Runtime Protection
, 2004
"... Security remains a major roadblock to universal acceptance of the Web for many kinds of transactions, especially since the recent sharp increase in remotely exploitable vulnerabilities has been attributed to Web application bugs. Many verification tools are discovering previously unknown vulnerabili ..."
Abstract
-
Cited by 234 (2 self)
- Add to MetaCart
(Show Context)
Security remains a major roadblock to universal acceptance of the Web for many kinds of transactions, especially since the recent sharp increase in remotely exploitable vulnerabilities has been attributed to Web application bugs. Many verification tools are discovering previously unknown vulnerabilities in legacy C programs, raising hopes that the same success can be achieved with Web applications. In this paper, we describe a sound and holistic approach to ensuring Web application security. Viewing Web application vulnerabilities as a secure information flow problem, we created a lattice-based static analysis algorithm derived from type systems and typestate, and addressed its soundness. During the analysis, sections of code considered vulnerable are instrumented with runtime guards, thus securing Web applications in the absence of user intervention. With sufficient annotations, runtime overhead can be reduced to zero. We also created a tool named WebSSARI (Web application Security by Static Analysis and Runtime Inspection) to test our algorithm, and used it to verify 230 open-source Web application projects on SourceForge.net, which were selected to represent projects of different maturity, popularity, and scale. 69 contained vulnerabilities and their developers were notified. 38 projects acknowledged our findings and stated their plans to provide patches. Our statistics also show that static analysis reduced potential runtime overhead by 98.4%.
Countering Code-Injection Attacks With Instruction-Set Randomization
- In Proceedings of the ACM Computer and Communications Security (CCS) Conference
, 2003
"... We describe a new, general approach for safeguarding systems against any type of code-injection attack. We apply Kerckhoff’s principle, by creating process-specific randomized instruction sets (e.g., machine instructions) of the system executing potentially vulnerable software. An attacker who does ..."
Abstract
-
Cited by 234 (26 self)
- Add to MetaCart
(Show Context)
We describe a new, general approach for safeguarding systems against any type of code-injection attack. We apply Kerckhoff’s principle, by creating process-specific randomized instruction sets (e.g., machine instructions) of the system executing potentially vulnerable software. An attacker who does not know the key to the randomization algorithm will inject code that is invalid for that randomized processor, causing a runtime exception. To determine the difficulty of integrating support for the proposed mechanism in the operating system, we modified the Linux kernel, the GNU binutils tools, and the bochs-x86 emulator. Although the performance penalty is significant, our prototype demonstrates the feasibility of the approach, and should be directly usable on a suitable-modified processor (e.g., the Transmeta Crusoe). Our approach is equally applicable against code-injecting attacks in scripting and interpreted languages, e.g., web-based SQL injection. We demonstrate this by modifying the Perl interpreter to permit randomized script execution. The performance penalty in this case is minimal. Where our proposed approach is feasible (i.e., in an emulated environment, in the presence of programmable or specialized hardware, or in interpreted languages), it can serve as a low-overhead protection mechanism, and can easily complement other mechanisms.