Results 1  10
of
38
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 539 (23 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the bilinear objective function under a monotonicity assumption, the polyhedrality of the solution set of a monotone XLCP, and an error bound result for a nondegenerate XLCP. We also present a finite, sequential linear programming algorithm for solving the nonmonotone XLCP.
Solving LargeScale Linear Programs by InteriorPoint Methods Under the MATLAB Environment
 Optimization Methods and Software
, 1996
"... In this paper, we describe our implementation of a primaldual infeasibleinteriorpoint algorithm for largescale linear programming under the MATLAB 1 environment. The resulting software is called LIPSOL  Linearprogramming InteriorPoint SOLvers. LIPSOL is designed to take the advantages of M ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
In this paper, we describe our implementation of a primaldual infeasibleinteriorpoint algorithm for largescale linear programming under the MATLAB 1 environment. The resulting software is called LIPSOL  Linearprogramming InteriorPoint SOLvers. LIPSOL is designed to take the advantages of MATLAB's sparsematrix functions and external interface facilities, and of existing Fortran sparse Cholesky codes. Under the MATLAB environment, LIPSOL inherits a high degree of simplicity and versatility in comparison to its counterparts in Fortran or C language. More importantly, our extensive computational results demonstrate that LIPSOL also attains an impressive performance comparable with that of efficient Fortran or C codes in solving largescale problems. In addition, we discuss in detail a technique for overcoming numerical instability in Cholesky factorization at the endstage of iterations in interiorpoint algorithms. Keywords: Linear programming, PrimalDual infeasibleinteriorp...
On Extending Some PrimalDual InteriorPoint Algorithms From Linear Programming to Semidefinite Programming
 SIAM Journal on Optimization
, 1998
"... This work concerns primaldual interiorpoint methods for semidefinite programming (SDP) that use a search direction originally proposed by HelmbergRendlVanderbeiWolkowicz [5] and KojimaShindohHara [11], and recently rediscovered by Monteiro [15] in a more explicit form. In analyzing these meth ..."
Abstract

Cited by 55 (1 self)
 Add to MetaCart
This work concerns primaldual interiorpoint methods for semidefinite programming (SDP) that use a search direction originally proposed by HelmbergRendlVanderbeiWolkowicz [5] and KojimaShindohHara [11], and recently rediscovered by Monteiro [15] in a more explicit form. In analyzing these methods, a number of basic equalities and inequalities were developed in [11] and also in [15] through different means and in different forms. In this paper, we give a concise derivation of the key equalities and inequalities for complexity analysis along the exact line used in linear programming (LP), producing basic relationships that have compact forms almost identical to their counterparts in LP. We also introduce a new formulation of the central path and variablemetric measures of centrality. These results provide convenient tools for deriving polynomiality results for primaldual algorithms extended from LP to SDP using the aforementioned and related search directions. We present examples...
On Extending PrimalDual InteriorPoint Algorithms from Linear Programming to Semidefinite Programming
, 1995
"... This work concerns primaldual interiorpoint methods for semidefinite programming (SDP) that use a linearized complementarity equation originally proposed by Kojima, Shindoh and Hara [11], and recently rediscovered by Monteiro [15] in a more explicit form. In analyzing these methods, a number of ba ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
This work concerns primaldual interiorpoint methods for semidefinite programming (SDP) that use a linearized complementarity equation originally proposed by Kojima, Shindoh and Hara [11], and recently rediscovered by Monteiro [15] in a more explicit form. In analyzing these methods, a number of basic equalities and inequalities were developed in [11] and also in [15] through different means and in different forms. In this paper, we give a very short derivation of the key equalities and inequalities along the exact line used in linear programming (LP), producing basic relationships that have highly compact forms almost identical to their counterparts in LP. We also introduce a new definition of the central path and variablemetric measures of centrality. These results provide convenient tools for extending existing polynomiality results for many, if not most, algorithms from LP to SDP with little complication. We present examples of such extensions, including the longstep infeasible...
Local Convergence of PredictorCorrector InfeasibleInteriorPoint Algorithms for SDPs and SDLCPs
 Mathematical Programming
, 1997
"... . An example of SDPs (semidefinite programs) exhibits a substantial difficulty in proving the superlinear convergence of a direct extension of the MizunoToddYe type predictorcorrector primaldual interiorpoint method for LPs (linear programs) to SDPs, and suggests that we need to force the genera ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
. An example of SDPs (semidefinite programs) exhibits a substantial difficulty in proving the superlinear convergence of a direct extension of the MizunoToddYe type predictorcorrector primaldual interiorpoint method for LPs (linear programs) to SDPs, and suggests that we need to force the generated sequence to converge to a solution tangentially to the central path (or trajectory). A MizunoToddYe type predictorcorrector infeasibleinteriorpoint algorithm incorporating this additional restriction for monotone SDLCPs (semidefinite linear complementarity problems) enjoys superlinear convergence under strict complementarity and nondegeneracy conditions. Key words. Semidefinite Programming, InfeasibleInteriorPoint Method, PredictorCorrectorMethod, Superlinear Convergence, PrimalDual Nondegeneracy Abbreviated Title. InteriorPoint Algorithms for SDPs y Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2121 OhOkayama, Meguroku, Tokyo 152, Japa...
Algorithms For Complementarity Problems And Generalized Equations
, 1995
"... Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult pr ..."
Abstract

Cited by 41 (5 self)
 Add to MetaCart
Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult problems are being proposed that exceed the capabilities of even the best algorithms currently available. There is, therefore, an immediate need to improve the capabilities of complementarity solvers. This thesis addresses this need in two significant ways. First, the thesis proposes and develops a proximal perturbation strategy that enhances the robustness of Newtonbased complementarity solvers. This strategy enables algorithms to reliably find solutions even for problems whose natural merit functions have strict local minima that are not solutions. Based upon this strategy, three new algorithms are proposed for solving nonlinear mixed complementarity problems that represent a significant improvement in robustness over previous algorithms. These algorithms have local Qquadratic convergence behavior, yet depend only on a pseudomonotonicity assumption to achieve global convergence from arbitrary starting points. Using the MCPLIB and GAMSLIB test libraries, we perform extensive computational tests that demonstrate the effectiveness of these algorithms on realistic problems. Second, the thesis extends some previously existing algorithms to solve more general problem classes. Specifically, the NE/SQP method of Pang & Gabriel (1993), the semismooth equations approach of De Luca, Facchinei & Kanz...
The Global Linear Convergence of a NonInterior PathFollowing Algorithm for Linear Complementarity Problems
 Mathematics of Operations Research
, 1997
"... A noninterior path following algorithm is proposed for the linear complementarity problem. The method employs smoothing techniques introduced by Kanzow. If the LCP is P 0 +R 0 and satisfies a nondegeneracy condition due to Fukushima, Luo, and Pang, then the algorithm is globally linearly converg ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
A noninterior path following algorithm is proposed for the linear complementarity problem. The method employs smoothing techniques introduced by Kanzow. If the LCP is P 0 +R 0 and satisfies a nondegeneracy condition due to Fukushima, Luo, and Pang, then the algorithm is globally linearly convergent. As with interior point path following methods, the convergence theory relies on the notion of a neighborhood for the central path. However, the choice of neighborhood differs significantly from that which appears in the interior point literature. Numerical experiments are presented that illustrate the significance of the neighborhood concept for this class of methods. 1 Introduction In this paper, we develop a noninterior path following method for the linear complementarity problem: LCP(q;M): Find (x ; y ) 2 IR n \Theta IR n satisfying Mx \Gamma y + q = 0; (1.1) x 0; y 0; (x ) T y = 0; (1.2) where M 2 IR n\Thetan and q 2 IR n . The global line...
A cone Complementarity Linearization Algorithm for Static OutputFeedback and Related Problems
 IEEE Transaction on Automatic Control
, 1997
"... Abstract—This paper describes a linear matrix inequality (LMI)based algorithm for the static and reducedorder outputfeedback synthesis problems of nthorder linear timeinvariant (LTI) systems with nu (respectively, ny) independent inputs (respectively, outputs). The algorithm is based on a “cone ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
Abstract—This paper describes a linear matrix inequality (LMI)based algorithm for the static and reducedorder outputfeedback synthesis problems of nthorder linear timeinvariant (LTI) systems with nu (respectively, ny) independent inputs (respectively, outputs). The algorithm is based on a “cone complementarity ” formulation of the problem and is guaranteed to produce a stabilizing controller of order m n 0 max(nu;ny), matching a generic stabilizability result of Davison and Chatterjee [7]. Extensive numerical experiments indicate that the algorithm finds a controller with order less than or equal to that predicted by Kimura’s generic stabilizability result (m n0nu0ny+1). A similar algorithm can be applied to a variety of control problems, including robust control synthesis. Index Terms — Complementarity problem, linear matrix inequality, reducedorder stabilization, static output feedback. I.
A PredictorCorrector InteriorPoint Algorithm for the Semidefinite Linear Complementarity Problem Using the AlizadehHaeberlyOverton Search Direction
, 1996
"... This paper proposes a globally convergent predictorcorrector infeasibleinteriorpoint algorithm for the monotone semidefinite linear complementarity problem using the AlizadehHaeberlyOverton search direction, and shows its quadratic local convergence under the strict complementarity condition. ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
This paper proposes a globally convergent predictorcorrector infeasibleinteriorpoint algorithm for the monotone semidefinite linear complementarity problem using the AlizadehHaeberlyOverton search direction, and shows its quadratic local convergence under the strict complementarity condition.
Solving RealWorld Linear Ordering Problems . . .
, 1995
"... Cutting plane methods require the solution of a sequence of linear programs, where the solution to one provides a warm start to the next. A cutting plane algorithm for solving the linear ordering problem is described. This algorithm uses the primaldual interior point method to solve the linear prog ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
Cutting plane methods require the solution of a sequence of linear programs, where the solution to one provides a warm start to the next. A cutting plane algorithm for solving the linear ordering problem is described. This algorithm uses the primaldual interior point method to solve the linear programming relaxations. A point which is a good warm start for a simplexbased cutting plane algorithm is generally not a good starting point for an interior point method. Techniques used to improve the warm start include attempting to identify cutting planes early and storing an old feasible point, which is used to help recenter when cutting planes are added. Computational results are described for some realworld problems; the algorithm appears to be competitive with a simplexbased cutting plane algorithm.