Results 1  10
of
67
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
 SIGKDD'02
, 2002
"... ... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in ..."
Abstract

Cited by 312 (57 self)
 Add to MetaCart
... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case of segmentation) offer an amount of "improvement" that would have been completely dwarfed by the variance that would have been observed by testing on many real world datasets, or the variance that would have been observed by changing minor (unstated) implementation details. To illustrate our point
Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures
"... The last decade has witnessed a tremendous growths of interests in applications that deal with querying and mining of time series data. Numerous representation methods for dimensionality reduction and similarity measures geared towards time series have been introduced. Each individual work introduci ..."
Abstract

Cited by 134 (23 self)
 Add to MetaCart
(Show Context)
The last decade has witnessed a tremendous growths of interests in applications that deal with querying and mining of time series data. Numerous representation methods for dimensionality reduction and similarity measures geared towards time series have been introduced. Each individual work introducing a particular method has made specific claims and, aside from the occasional theoretical justifications, provided quantitative experimental observations. However, for the most part, the comparative aspects of these experiments were too narrowly focused on demonstrating the benefits of the proposed methods over some of the previously introduced ones. In order to provide a comprehensive validation, we conducted an extensive set of time series experiments reimplementing 8 different representation methods and 9 similarity measures and their variants, and testing their effectiveness on 38 time series data sets from a wide variety of application domains. In this paper, we give an overview of these different techniques and present our comparative experimental findings regarding their effectiveness. Our experiments have provided both a unified validation of some of the existing achievements, and in some cases, suggested that certain claims in the literature may be unduly optimistic. 1.
On the Marriage of L_pnorms and Edit Distance
 IN VLDB
, 2004
"... Existing studies on time series are based on two categories of distance functions. The first category consists of the Lpnorms. They are metric distance functions but cannot support local time shifting. The second category consists of distance functions which are capable of handling local time shift ..."
Abstract

Cited by 97 (3 self)
 Add to MetaCart
Existing studies on time series are based on two categories of distance functions. The first category consists of the Lpnorms. They are metric distance functions but cannot support local time shifting. The second category consists of distance functions which are capable of handling local time shifting but are nonmetric. The first
Time Series Shapelets: A New Primitive for Data Mining
"... Classification of time series has been attracting great interest over the past decade. Recent empirical evidence has strongly suggested that the simple nearest neighbor algorithm is very difficult to beat for most time series problems. While this may be considered good news, given the simplicity of ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
Classification of time series has been attracting great interest over the past decade. Recent empirical evidence has strongly suggested that the simple nearest neighbor algorithm is very difficult to beat for most time series problems. While this may be considered good news, given the simplicity of implementing the nearest neighbor algorithm, there are some negative consequences of this. First, the nearest neighbor algorithm requires storing and searching the entire dataset, resulting in a time and space complexity that limits its applicability, especially on resourcelimited sensors. Second, beyond mere classification accuracy, we often wish to gain some insight into the data. In this work we introduce a new time series primitive, time series shapelets, which addresses these limitations. Informally, shapelets are time series subsequences which are in some sense maximally representative of a class. As we shall show with extensive empirical evaluations in diverse domains, algorithms based on the time series shapelet primitives can be interpretable, more accurate and significantly faster than stateoftheart classifiers.
Temporal Classification: Extending the Classification Paradigm to Multivariate Time Series
, 2002
"... Machine learning research has, to a great extent, ignored an important aspect of many real world applications: time. Existing concept learners predominantly operate on a static set of attributes; for example, classifying flowers described by leaf size, petal colour and petal count. The values of the ..."
Abstract

Cited by 46 (0 self)
 Add to MetaCart
Machine learning research has, to a great extent, ignored an important aspect of many real world applications: time. Existing concept learners predominantly operate on a static set of attributes; for example, classifying flowers described by leaf size, petal colour and petal count. The values of these attributes is assumed to be unchanging  the flower never grows or loses leaves.
Time series feature extraction for data mining using DWT and DFT
, 2003
"... A new method of dimensionality reduction for time series data mining is proposed. Each time series is compressed with wavelet or Fourier decomposition. Instead of using only the first coefficients, a new method of choosing the best coefficients for a set of time series is presented. A criterion func ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
(Show Context)
A new method of dimensionality reduction for time series data mining is proposed. Each time series is compressed with wavelet or Fourier decomposition. Instead of using only the first coefficients, a new method of choosing the best coefficients for a set of time series is presented. A criterion function is evaluated using all values of a coefficient position to determine a good set of coefficients. The optimal criterion function with respect to energy preservation is given. For many real life data sets much more energy can be preserved, which is advantageous for data mining tasks. All time series to be mined, or at least a representative subset, need to be available a priori.
A WaveletBased Anytime Algorithm for KMeans Clustering of Time Series
 In Proc. Workshop on Clustering High Dimensionality Data and Its Applications
, 2003
"... The emergence of the field of data mining in the last decade has sparked an increasing interest in clustering of tiate series. Although there has been much research on clustering in general, most classic machine learning and data mining algorithms do not work well for time series due to their unique ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
The emergence of the field of data mining in the last decade has sparked an increasing interest in clustering of tiate series. Although there has been much research on clustering in general, most classic machine learning and data mining algorithms do not work well for time series due to their unique structure. In particular, the high dimensionaliF, very high feature correlation, and the (typically) large amount of noise that characterize time series data present a difficult challenge. In this work we address these challenges by introducing a novel anytiate version of kMeans clustering algorithm for time series. The algorithm works by leveraging off the multiresolution property of wavelets. In particular, an initial clustering is perforated with a very coarse resolution representation of the data. The results obtained from this "quick and dirty" clustering are used to initialize a clustering at a slightly finer level of approximation. This process is repeated until the clustering results stabilize or until the "approxiatation" is the raw data. In addition to casting kMeans as an anytime algorithm, our approach has two other very unintuitive properties. The quality of the clustering is often better than the batch algorithm, and even if the algorithm is run to coatpletion, the time taken is typically much less than the time taken by the original algorithm. We explain, and eatpirically demonstrate these surprising and desirable properties with coatprehensive experiatents on several publicly available real data sets.
Time series knowledge mining
, 2006
"... An important goal of knowledge discovery is the search for patterns in data that can help explain the underlying process that generated the data. The patterns are required to be new, useful, and understandable to humans. In this work we present a new method for the understandable description of loca ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
An important goal of knowledge discovery is the search for patterns in data that can help explain the underlying process that generated the data. The patterns are required to be new, useful, and understandable to humans. In this work we present a new method for the understandable description of local temporal relationships in multivariate data, called Time Series Knowledge Mining (TSKM). We define the Time Series Knowledge Representation (TSKR) as a new language for expressing temporal knowledge. The patterns have a hierarchical structure, each level corresponds to a single temporal concept. On the lowest level, intervals are used to represent duration. Overlapping parts of intervals represent coincidence on the next level. Several such blocks of intervals are connected with a partial order relation on the highest level. Each pattern element consists of a semiotic triple to connect syntactic and semantic information with pragmatics. The patterns are very compact, but offer details for each element on demand. In comparison with related approaches, the TSKR is shown to have advantages in robustness, expressivity, and comprehensibility. Efficient algorithms for the discovery of the patterns are proposed. The search for coincidence as well as partial order can be formulated as variants of the well known frequent itemset problem. One of the best known algorithms for this problem is therefore adapted for our purposes. Human interaction is used during the mining to analyze and validate partial results as early as possible and guide further processing steps. The efficacy of the methods is demonstrated using several data sets. In an application to sports medicine the results were recognized as valid and useful by an expert of the field.
Experimental comparison of representation methods and distance measures for time series data
 Data Mining and Knowledge Discovery
"... ar ..."
(Show Context)
Efficient Anomaly Monitoring Over Moving Object Trajectory Streams
"... Lately there exist increasing demands for online abnormality monitoring over trajectory streams, which are obtained from moving object tracking devices. This problem is challenging due to the requirement of high speed data processing within limited space cost. In this paper, we present a novel frame ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
(Show Context)
Lately there exist increasing demands for online abnormality monitoring over trajectory streams, which are obtained from moving object tracking devices. This problem is challenging due to the requirement of high speed data processing within limited space cost. In this paper, we present a novel framework for monitoring anomalies over continuous trajectory streams. First, we illustrate the importance of distancebased anomaly monitoring over moving object trajectories. Then, we utilize the local continuity characteristics of trajectories to build local clusters upon trajectory streams and monitor anomalies via efficient pruning strategies. Finally, we propose a piecewise metric index structure to reschedule the joining order of local clusters to further reduce the time cost. Our extensive experiments demonstrate the effectiveness and efficiency of our methods.