Results 1  10
of
20
Nearly Optimal ExpectedCase Planar Point Location
"... We consider the planar point location problem from the perspective of expected search time. We are given a planar polygonal subdivision S and for each polygon of the subdivision the probability that a query point lies within this polygon. The goal is to compute a search structure to determine which ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
(Show Context)
We consider the planar point location problem from the perspective of expected search time. We are given a planar polygonal subdivision S and for each polygon of the subdivision the probability that a query point lies within this polygon. The goal is to compute a search structure to determine which cell of the subdivision contains a given query point, so as to minimize the expected search time. This is a generalization of the classical problem of computing an optimal binary search tree for onedimensional keys. In the onedimensional case it has long been known that the entropy H of the distribution is the dominant term in the lower bound on the expectedcase search time, and further there exist search trees achieving expected search times of at most H + 2. Prior to this work, there has been no known structure for planar point location with an expected search time better than 2H, and this result required strong assumptions on the nature of the query point distribution. Here we present a data structure whose expected search time is nearly equal to the entropy lower bound, namely H + o(H). The result holds for any polygonal subdivision in which the number of sides of each of the polygonal cells is bounded, and there are no assumptions on the query distribution within each cell. We extend these results to subdivisions with convex cells, assuming a uniform query distribution within each cell.
EntropyPreserving Cuttings and SpaceEfficient Planar Point Location
 In Proceedings of the Twelfth Annual ACMSIAM Symposium on Discrete Algorithms
, 2001
"... Point location is the problem of preprocessing a planar polygonal subdivision S into a data structure in order to determine efficiently the cell of the subdivision that contains a given query point. Given the probabilities pz that the query point lies within each cell z 2 S, a natural question is ho ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
(Show Context)
Point location is the problem of preprocessing a planar polygonal subdivision S into a data structure in order to determine efficiently the cell of the subdivision that contains a given query point. Given the probabilities pz that the query point lies within each cell z 2 S, a natural question is how to design such a structure so as to minimize the expectedcase query time. The entropy H of the probability distribution is the dominant term in the lower bound on the expectedcase search time. Clearly the number of edges n of the subdivision is a lower bound on the space required. There is no known approach that simultaneously achieves the goals of H + o(H) query time and O(n) space. In this paper we introduce entropypreserving cuttings and show how to use them to achieve query time H+o(H), using only O(n log n) space. 1 Introduction Planar point location is an important problem in computational geometry. We are given a polygonal subdivision S consisting of n edges, and the goal is ...
Transdichotomous Results in Computational Geometry, I: Point Location in Sublogarithmic Time
, 2008
"... Given a planar subdivision whose coordinates are integers bounded by U ≤ 2 w, we present a linearspace data structure that can answer point location queries in O(min{lg n / lg lg n, √ lg U/lg lg U}) time on the unitcost RAM with word size w. Thisisthe first result to beat the standard Θ(lg n) bou ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
Given a planar subdivision whose coordinates are integers bounded by U ≤ 2 w, we present a linearspace data structure that can answer point location queries in O(min{lg n / lg lg n, √ lg U/lg lg U}) time on the unitcost RAM with word size w. Thisisthe first result to beat the standard Θ(lg n) bound for infinite precision models. As a consequence, we obtain the first o(n lg n) (randomized) algorithms for many fundamental problems in computational geometry for arbitrary integer input on the word RAM, including: constructing the convex hull of a threedimensional point set, computing the Voronoi diagram or the Euclidean minimum spanning tree of a planar point set, triangulating a polygon with holes, and finding intersections among a set of line segments. Higherdimensional extensions and applications are also discussed. Though computational geometry with bounded precision input has been investigated for a long time, improvements have been limited largely to problems of an orthogonal flavor. Our results surpass this longstanding limitation, answering, for example, a question of Willard (SODA’92).
Instanceoptimal geometric algorithms
"... ... in 2d and 3d, and offline point location in 2d. We prove the existence of an algorithm A for computing 2d or 3d convex hulls that is optimal for every point set in the following sense: for every set S of n points and for every algorithm A ′ in a certain class A, the maximum running time of ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
... in 2d and 3d, and offline point location in 2d. We prove the existence of an algorithm A for computing 2d or 3d convex hulls that is optimal for every point set in the following sense: for every set S of n points and for every algorithm A ′ in a certain class A, the maximum running time of A on input 〈s1,..., sn〉 is at most a constant factor times the maximum running time of A ′ on 〈s1,..., sn〉, where the maximum is taken over all permutations 〈s1,..., sn 〉 of S. In fact, we can establish a stronger property: for every S and A ′ , the maximum running time of A is at most a constant factor times the average running time of A ′ over all permutations of S. We call algorithms satisfying these properties instanceoptimal in the orderoblivious and randomorder setting. Such instanceoptimal algorithms simultaneously subsume outputsensitive algorithms and distributiondependent averagecase algorithms, and all algorithms that do not take advantage of the order of the input or that assume the input is given in a random order. The class A under consideration consists of all algorithms in a decision tree model where the tests involve only multilinear functions with a constant number of arguments. To establish an instancespecific lower bound, we deviate from traditional Ben–Orstyle proofs and adopt an interesting adversary argument. For 2d convex hulls, we prove that a version of the well known algorithm by Kirkpatrick and Seidel (1986) or Chan, Snoeyink, and Yap (1995) already attains this lower bound. For 3d convex hulls, we propose a new algorithm. To demonstrate the potential of the concept, we further obtain instanceoptimal results for a few other standard problems in computational geometry, such as maxima in 2d and 3d, orthogonal line segment intersection in 2d, finding bichromatic L∞close pairs in 2d, offline orthogonal range searching in 2d, offline dominance reporting in 2d and 3d, offline halfspace range reporting 1.
DISTRIBUTIONSENSITIVE POINT LOCATION IN CONVEX SUBDIVISIONS
"... A data structure is presented for point location in convex planar subdivisions when the distribution of queries is known in advance. The data structure has an expected query time that is within a constant factor of optimal. ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
A data structure is presented for point location in convex planar subdivisions when the distribution of queries is known in advance. The data structure has an expected query time that is within a constant factor of optimal.
Achieving Spatial Adaptivity while Finding Approximate Nearest Neighbors
"... We present the first spatially adaptive data structure that answers approximate nearest neighbor (ANN) queries to points that reside in a geometric space of any constant dimension d. The Ltnorm approximation ratio is O(d 1+1/t), and the running time for a query q is O(d 2 lg δ(p, q)), where p is th ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
(Show Context)
We present the first spatially adaptive data structure that answers approximate nearest neighbor (ANN) queries to points that reside in a geometric space of any constant dimension d. The Ltnorm approximation ratio is O(d 1+1/t), and the running time for a query q is O(d 2 lg δ(p, q)), where p is the result of the preceding query and δ(p, q) is the number of input points in a suitablysized box containing p and q. Our data structure has O(dn) size and requires O(d 2 n lg n) preprocessing time, where n is the number of points in the data structure. The size of the bounding box for δ depends on d, and our results rely on the Random Access Machine (RAM) model with word size Θ(lg n). 1
LowEntropy Computational Geometry
, 2010
"... The worstcase model for algorithm design does not always reflect the real world: inputs may have additional structure to be exploited, and sometimes data can be imprecise or become available only gradually. To better understand these situations, we examine several scenarios where additional informa ..."
Abstract
 Add to MetaCart
The worstcase model for algorithm design does not always reflect the real world: inputs may have additional structure to be exploited, and sometimes data can be imprecise or become available only gradually. To better understand these situations, we examine several scenarios where additional information can affect the design and analysis of geometric algorithms. First, we consider hereditary convex hulls: given a threedimensional convex polytope and a twocoloring of its vertices, we can find the individual monochromatic polytopes in linear expected time. This can be generalized in many ways, eg, to more than two colors, and to the offlineproblem where we wish to preprocess a polytope so that any large enough subpolytope can be found quickly. Our techniques can also be used to give a simple analysis of the selfimproving algorithm for planar Delaunay triangulations by Clarkson and Seshadhri [58]. Next, we assume that the point coordinates have a bounded number of bits, and that we can do standard bit manipulations in constant time. Then Delaunay triangulations can be found in expected time O(n √ log log n). Our result is based on a new connection between quadtrees and Delaunay triangulations, which also lets us generalize a recent result by Löffler and Snoeyink about Delaunay triangulations for imprecise points [110]. Finally, we consider randomized incremental constructions when the input permutation is generated by a boundeddegree Markov chain, and show that the resulting running time is almost optimal for chains with a constant eigenvalue gap.