Results 1  10
of
24
Splay trees, DavenportSchinzel sequences, and the deque conjecture
"... We introduce a new technique to bound the asymptotic performance of splay trees. The basic idea is to transcribe, in an indirect fashion, the rotations performed by the splay tree as a DavenportSchinzel sequence, none of whose subsequences are isomorphic to a fixed forbidden subsequence. We direct ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
(Show Context)
We introduce a new technique to bound the asymptotic performance of splay trees. The basic idea is to transcribe, in an indirect fashion, the rotations performed by the splay tree as a DavenportSchinzel sequence, none of whose subsequences are isomorphic to a fixed forbidden subsequence. We direct this technique towards Tarjan’s deque conjecture and prove that n deque operations take only O(nα ∗ (n)) time, where α ∗ (n) is the minimum number of applications of the inverseAckermann function mapping n to a constant. We are optimistic that this approach could be directed towards other open conjectures on splay trees such as the traversal and split conjectures.
Experimental Evaluation of a New Shortest Path Algorithm (Extended Abstract)
, 2002
"... We evaluate the practical eciency of a new shortest path algorithm for undirected graphs which was developed by the rst two authors. This algorithm works on the fundamental comparisonaddition model. Theoretically, this new algorithm outperforms Dijkstra's algorithm on sparse graphs for t ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
(Show Context)
We evaluate the practical eciency of a new shortest path algorithm for undirected graphs which was developed by the rst two authors. This algorithm works on the fundamental comparisonaddition model. Theoretically, this new algorithm outperforms Dijkstra's algorithm on sparse graphs for the allpairs shortest path problem, and more generally, for the problem of computing singlesource shortest paths from !(1) different sources. Our extensive experimental analysis demonstrates that this is also the case in practice. We present results which show the new algorithm to run faster than Dijkstra's on a variety of sparse graphs when the number of vertices ranges from a few thousand to a few million, and when computing singlesource shortest paths from as few as three different sources.
Proximate point searching
 In Proceedings of the 14th Canadian Conference on Computational Geometry (CCCG
, 2002
"... In the 2D point searching problem, the goal is to preprocess n points P = {p1,..., pn} in the plane so that, for an online sequence of query points q1,..., qm, it can quickly determined which (if any) of the elements of P are equal to each query point qi. This problem can be solved in O(log n) time ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
In the 2D point searching problem, the goal is to preprocess n points P = {p1,..., pn} in the plane so that, for an online sequence of query points q1,..., qm, it can quickly determined which (if any) of the elements of P are equal to each query point qi. This problem can be solved in O(log n) time by mapping the problem to one dimension. We present a data structure that is optimized for answering queries quickly when they are geometrically close to the previous successful query. Specifically, our data structure executes queries in time O(log d(qi−1, qi)), where d is some distance function between two points, and uses O(n log n) space. Our structure works with a variety of distance functions. In contrast, it is proved that, for some of the most intuitive distance functions d, it is impossible to obtain an O(log d(qi−1, qi)) runtime, or any bound that is o(log n).
Pairing heaps with O(log log n) decrease cost
 In 20th ACMSIAM Symposium on Discrete Algorithms
, 2009
"... We give a variation of the pairing heaps for which the time bounds for all the operations match the lower bound proved by Fredman for a family of similar selfadjusting heaps. Namely, our heap structure requires O(1) for insert and findmin, O(log n) for deletemin, and O(log log n) for decreasekey a ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We give a variation of the pairing heaps for which the time bounds for all the operations match the lower bound proved by Fredman for a family of similar selfadjusting heaps. Namely, our heap structure requires O(1) for insert and findmin, O(log n) for deletemin, and O(log log n) for decreasekey and meld (all the bounds are in the amortized sense except for findmin). 1
Key independent optimality
 In International Symp. on Algorithms and Computation
, 2002
"... A new form of optimality for comparison based static dictionaries is introduced. This type of optimality, keyindependent optimality, is motivated by applications that assign key values randomly. It is shown that any data structure that is keyindependently optimal is expected to execute any access s ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
(Show Context)
A new form of optimality for comparison based static dictionaries is introduced. This type of optimality, keyindependent optimality, is motivated by applications that assign key values randomly. It is shown that any data structure that is keyindependently optimal is expected to execute any access sequence where the key values are assigned arbitrarily to unordered data as fast as any offline binary search tree algorithm, within a multiplicative constant. Asymptotically tight upper and lower bounds are presented for keyindependent optimality. Splay trees are shown to be keyindependently optimal. 1
A framework for speeding up priorityqueue operations
, 2004
"... Abstract. We introduce a framework for reducing the number of element comparisons performed in priorityqueue operations. In particular, we give a priority queue which guarantees the worstcase cost of O(1) per minimum finding and insertion, and the worstcase cost of O(log n) with at most log n + O ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a framework for reducing the number of element comparisons performed in priorityqueue operations. In particular, we give a priority queue which guarantees the worstcase cost of O(1) per minimum finding and insertion, and the worstcase cost of O(log n) with at most log n + O(1) element comparisons per minimum deletion and deletion, improving the bound of 2log n + O(1) on the number of element comparisons known for binomial queues. Here, n denotes the number of elements stored in the data structure prior to the operation in question, and log n equals max {1,log 2 n}. We also give a priority queue that provides, in addition to the abovementioned methods, the prioritydecrease (or decreasekey) method. This priority queue achieves the worstcase cost of O(1) per minimum finding, insertion, and priority decrease; and the worstcase cost of O(log n) with at most log n + O(log log n) element comparisons per minimum deletion and deletion. CR Classification. E.1 [Data Structures]: Lists, stacks, and queues; E.2 [Data
Pairing Heaps with Costless Meld
, 2009
"... Improving the structure and analysis in [1], we give a variation of the pairing heaps that has amortized zero cost per meld (compared to an O(log log n) in [1]) and the same amortized bounds for all other operations. More precisely, the new pairing heap requires: no cost per meld, O(1) per findmin ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
(Show Context)
Improving the structure and analysis in [1], we give a variation of the pairing heaps that has amortized zero cost per meld (compared to an O(log log n) in [1]) and the same amortized bounds for all other operations. More precisely, the new pairing heap requires: no cost per meld, O(1) per findmin and insert, O(log n) per deletemin, and O(log log n) per decreasekey. These bounds are the best known for any selfadjusting heap, and match the lower bound proven by Fredman for a family of such heaps. Moreover, our structure is even simpler than that in [1].
MultiSplay Trees
, 2006
"... In this thesis, we introduce a new binary search tree data structure called multisplay tree and prove that multisplay trees have most of the useful properties different binary search trees (BSTs) have. First, we demonstrate a close variant of the splay tree access lemma [ST85] for multisplay tree ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
In this thesis, we introduce a new binary search tree data structure called multisplay tree and prove that multisplay trees have most of the useful properties different binary search trees (BSTs) have. First, we demonstrate a close variant of the splay tree access lemma [ST85] for multisplay trees, a lemma that implies multisplay trees have the O(log n) runtime property, the static finger property, and the static optimality property. Then, we extend the access lemma by showing the remassing lemma, which is similar to the reweighting lemma for splay trees [Geo04]. The remassing lemma shows that multisplay trees satisfy the working set property and keyindependent optimality, and multisplay trees are competitive to parametrically balanced trees, as defined in [Geo04]. Furthermore, we also prove that multisplay trees achieve the O(log log n)competitiveness and that sequential access in multisplay trees costs O(n). Then we naturally extend the static model to allow insertions and deletions and show how to carry out these operations in multisplay trees to achieve