Results 1 
2 of
2
A Formalization of the ChurchTuring Thesis for StateTransition Models
"... Abstract. Our goal is to formalize the ChurchTuring Thesis for a very large class of computational models. Specifically, the notion of an “effective model of computation ” over an arbitrary countable domain is axiomatized. This is accomplished by modifying Gurevich’s “Abstract State Machine ” postu ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. Our goal is to formalize the ChurchTuring Thesis for a very large class of computational models. Specifically, the notion of an “effective model of computation ” over an arbitrary countable domain is axiomatized. This is accomplished by modifying Gurevich’s “Abstract State Machine ” postulates for statetransition systems. A proof is provided that all models satisfying our axioms, regardless of underlying data structure—and including all standard statetransition models—are equivalent to (up to isomorphism), or weaker than, Turing machines. To allow the comparison of arbitrary models operating over arbitrary domains, we employ a quasiordering on computational models, based on their extensionality. LCMs can do anything that could be described as “rule of thumb ” or “purely mechanical”.... This is sufficiently well established that it is now agreed amongst logicians that “calculable by means of an LCM” is the correct accurate rendering of such phrases. 1
A Mechanisation of Computability Theory in HOL
 In Proceedings of the 9th International Conference on Theorem Proving in Higher Order Logics
, 1996
"... . This paper describes a mechanisation of computability theory in HOL using the Unlimited Register Machine (URM) model of computation. The URM model is first specified as a rudimentary machine language and then the notion of a computable function is derived. This is followed by an illustration o ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
. This paper describes a mechanisation of computability theory in HOL using the Unlimited Register Machine (URM) model of computation. The URM model is first specified as a rudimentary machine language and then the notion of a computable function is derived. This is followed by an illustration of the proof of a number of basic results of computability which include various closure properties of computable functions. These are used in the implementation of a mechanism which partly automates the proof of the computability of functions and a number of functions are then proved to be computable. This work forms part of a comparative study of different theorem proving approaches and a brief discussion regarding theorem proving in HOL follows the description of the mechanisation. 1 Introduction The theory of computation is a field which has been widely explored in mathematical and computer science literature [4, 12, 13] and several approaches to a standard model of computation h...