Results 1 
1 of
1
An Optimal Algorithm for Monte Carlo Estimation
, 1995
"... A typical approach to estimate an unknown quantity is to design an experiment that produces a random variable Z distributed in [0; 1] with E[Z] = , run this experiment independently a number of times and use the average of the outcomes as the estimate. In this paper, we consider the case when no a ..."
Abstract

Cited by 68 (4 self)
 Add to MetaCart
A typical approach to estimate an unknown quantity is to design an experiment that produces a random variable Z distributed in [0; 1] with E[Z] = , run this experiment independently a number of times and use the average of the outcomes as the estimate. In this paper, we consider the case when no a priori information about Z is known except that is distributed in [0; 1]. We describe an approximation algorithm AA which, given ffl and ffi, when running independent experiments with respect to any Z, produces an estimate that is within a factor 1 + ffl of with probability at least 1 \Gamma ffi. We prove that the expected number of experiments run by AA (which depends on Z) is optimal to within a constant factor for every Z. An announcement of these results appears in P. Dagum, D. Karp, M. Luby, S. Ross, "An optimal algorithm for MonteCarlo Estimation (extended abstract)", Proceedings of the Thirtysixth IEEE Symposium on Foundations of Computer Science, 1995, pp. 142149 [3]. Section ...