Results 1 
1 of
1
Robust Solutions To Uncertain Semidefinite Programs
, 1998
"... In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values ..."
Abstract

Cited by 78 (3 self)
 Add to MetaCart
In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of parameters within the given bounds. Assuming the data matrices are rational functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust solution to exist, as SDPs. When the perturbation is "full", our conditions are necessary and sufficient. In this case, we provide sufficient conditions which guarantee that the robust solution is unique, and continuous (Hölderstable) with respect to the unperturbed problems' data. The approach can thus be used to regularize illconditioned SDPs. We illustrate our results with examples taken from linear programming, maximum norm minimization, polynomial interpolation and integer programming.