Results 1  10
of
35
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to ..."
Abstract

Cited by 160 (14 self)
 Add to MetaCart
(Show Context)
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optimal
Folding and Unfolding in Computational Geometry
"... Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain ..."
Abstract

Cited by 56 (4 self)
 Add to MetaCart
Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain be straightened?
Unfolding Some Classes of Orthogonal Polyhedra
, 1998
"... In this paper, we study unfoldings of orthogonal polyhedra. More precisely, we define two special classes of orthogonal polyhedra, orthostacks and orthotubes, and show how to generate unfoldings by cutting faces, such that the resulting surfaces can be flattened into a single connected polygon. ..."
Abstract

Cited by 35 (14 self)
 Add to MetaCart
In this paper, we study unfoldings of orthogonal polyhedra. More precisely, we define two special classes of orthogonal polyhedra, orthostacks and orthotubes, and show how to generate unfoldings by cutting faces, such that the resulting surfaces can be flattened into a single connected polygon.
Ununfoldable polyhedra with convex faces
 COMPUT. GEOM. THEORY APPL
, 2002
"... Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex fa ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
(Show Context)
Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that “open” polyhedra with triangular faces may not be unfoldable no matter how they are cut.
Shortest Paths on a Polyhedron, Part I: Computing Shortest Paths
 INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS
, 1990
"... We present an algorithm for determining the shortest path between any two points along the surface of a polyhedron which need not be convex. This algorithm also computes for any source point on the surface of a polyhedron the inward layout and the subdivision of the polyhedron which can be used for ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
We present an algorithm for determining the shortest path between any two points along the surface of a polyhedron which need not be convex. This algorithm also computes for any source point on the surface of a polyhedron the inward layout and the subdivision of the polyhedron which can be used for processing queries of shortest paths between the source point and any destination point. Our algorithm uses a new approach which deviates from the conventional "continuous Dijkstra" technique. Our algorithm has time complexity O(n²) and space complexity \Theta (n).
Folding and Unfolding
 in Computational Geometry. 2004. Monograph in preparation
, 2001
"... author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Acknowledgments My time as a graduate student has been the best period of my life so far, ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
(Show Context)
author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Acknowledgments My time as a graduate student has been the best period of my life so far, and for that wonderful experience I owe many thanks. I had two excellent advisors, Anna Lubiw and Ian Munro. I started working with Anna after I took her two classes on algorithms and computational geometry during my Master’s, which got me excited about both these areas, and even caused me to switch entire fields of computer science, from distributed systems to theory and algorithms. Anna introduced me to Ian when some of our problems in computational geometry turned out to have large data structural components, and my work with Ian blossomed from there. The sets of problems I worked on with Anna and Ian diverged, and both remain my primary interests. Anna and Ian have had a profound influence throughout my academic career. At the most
Ununfoldable Polyhedra
, 1999
"... A wellstudied problem is that of unfolding a convex polyhedron into a simple planar polygon. In this paper, we study the limits of unfoldability. We give an example of a polyhedron with convex faces that cannot be unfolded by cutting along its edges. We further show that such a polyhedron can inde ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
(Show Context)
A wellstudied problem is that of unfolding a convex polyhedron into a simple planar polygon. In this paper, we study the limits of unfoldability. We give an example of a polyhedron with convex faces that cannot be unfolded by cutting along its edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that "open" polyhedra with convex faces may not be unfoldable no matter how they are cut.
Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings
, 2003
"... Abstract. Let S be the boundary of a convex polytope of dimension d + 1, or more generally let S be a convex polyhedral pseudomanifold. We prove that S has a polyhedral nonoverlapping unfolding into R d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R d by id ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
(Show Context)
Abstract. Let S be the boundary of a convex polytope of dimension d + 1, or more generally let S be a convex polyhedral pseudomanifold. We prove that S has a polyhedral nonoverlapping unfolding into R d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v ∈ S, which is the exponential map to S from the tangent space at v. We characterize the cut locus (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3polytopes into R 2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic nonpolynomial complexity of nonconvex manifolds.
Facility location on terrains
 PROC. 9TH INTERNATIONAL SYMPOSIUM OF ALGORITHMS AND COMPUTATION, VOLUME 1533 OF LECTURE NOTES COMPUT. SCI
, 1998
"... Given a terrain defined as a piecewiselinear function with n triangles, and m point sites on it, we would like to identify the location on the terrain that minimizes the maximum distance to the sites. The distance is measured as the length of the Euclidean shortest path along the terrain. To simpli ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Given a terrain defined as a piecewiselinear function with n triangles, and m point sites on it, we would like to identify the location on the terrain that minimizes the maximum distance to the sites. The distance is measured as the length of the Euclidean shortest path along the terrain. To simplify the problem somewhat, we extend the terrain to (the surface of) a polyhedron. To compute the optimum placement, we compute the furthestsite Voronoi diagram of the sites on the polyhedron. The diagram has maximum combinatorial complexity Θ(mn²), and the algorithm runs in O(mn² log² mlogn) time.
Enumerating foldings and unfoldings between polygons and polytopes
 Graphs Comb
"... Abstract. We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infi ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
Abstract. We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite. 1