Results 1  10
of
175
Geometric bounds for eigenvalues of Markov chains
, 1991
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 271 (12 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 231 (12 self)
 Add to MetaCart
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.
Path coupling: A technique for proving rapid mixing in markov chains
 In FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS
, 1997
"... The main technique used in algorithm design for approximating #Phard counting problems is the Markov chain Monte Carlo method. At the heart of the method is the study of the convergence (mixing) rates of particular Markov chains of interest. In this paper we illustrate a new approach to the couplin ..."
Abstract

Cited by 148 (19 self)
 Add to MetaCart
The main technique used in algorithm design for approximating #Phard counting problems is the Markov chain Monte Carlo method. At the heart of the method is the study of the convergence (mixing) rates of particular Markov chains of interest. In this paper we illustrate a new approach to the coupling technique, which we call path coupling, for bounding mixing rates. Previous appliccitions of coupling have required detailed insights into the combinatorics of the problem at hand, and this complexity can make the technique extremely difficult to apply successfully. Path coupling helps to minimize the combinatorial difficulty and in all cases provides simpler convergence proofs than does the standard coupling method. Howevel; the true power of the method i>i that the simpl$cation obtained may allow coupling proofs which were previously unknown, or provide significantly better bounds than those obtained using the standard method. We apply the path coupling method to several hard combinatorial problems, obtaining new or improved results. We examine combinatorial probr'ems such as graph colouring and TWICESAT, and problems fn?m statistical physics, such as the antiferromagnetic Potts model and the hardcore lattice gas model. In each case we provide either a proof of rapid mixing where none was known previously, or substantial simpl$cation of existing proofs with conseqent gains in the pegormance of the resulting algorithms. 1
Deeper inside pagerank
 Internet Mathematics
, 2004
"... Abstract. This paper serves as a companion or extension to the “Inside PageRank” paper by Bianchini et al. [Bianchini et al. 03]. It is a comprehensive survey of all issues associated with PageRank, covering the basic PageRank model, available and recommended solution methods, storage issues, existe ..."
Abstract

Cited by 142 (4 self)
 Add to MetaCart
Abstract. This paper serves as a companion or extension to the “Inside PageRank” paper by Bianchini et al. [Bianchini et al. 03]. It is a comprehensive survey of all issues associated with PageRank, covering the basic PageRank model, available and recommended solution methods, storage issues, existence, uniqueness, and convergence properties, possible alterations to the basic model, suggested alternatives to the traditional solution methods, sensitivity and conditioning, and finally the updating problem. We introduce a few new results, provide an extensive reference list, and speculate about exciting areas of future research. 1.
General state space Markov chains and MCMC algorithm
 PROBABILITY SURVEYS
, 2004
"... This paper surveys various results about Markov chains on general (noncountable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform e ..."
Abstract

Cited by 106 (26 self)
 Add to MetaCart
This paper surveys various results about Markov chains on general (noncountable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform ergodicity are presented, along with quantitative bounds on the rate of convergence to stationarity. Many of these results are proved using direct coupling constructions based on minorisation and drift conditions. Necessary and sufficient conditions for Central Limit Theorems (CLTs) are also presented, in some cases proved via the Poisson Equation or direct regeneration constructions. Finally, optimal scaling and weak convergence results for MetropolisHastings algorithms are discussed. None of the results presented is new, though many of the proofs are. We also describe some Open Problems.
Markov Chain Algorithms for Planar Lattice Structures
, 1995
"... Consider the following Markov chain, whose states are all domino tilings of a 2n x 2n chessboard: starting from some arbitrary tiling, pick a 2 x 2 window uniformly at random. If the four squares appearing in this window are covered by two parallel dominoes, rotate the dominoes 90° in place. Repeat ..."
Abstract

Cited by 90 (9 self)
 Add to MetaCart
Consider the following Markov chain, whose states are all domino tilings of a 2n x 2n chessboard: starting from some arbitrary tiling, pick a 2 x 2 window uniformly at random. If the four squares appearing in this window are covered by two parallel dominoes, rotate the dominoes 90° in place. Repeat many times. This process is used in practice to generate a random tiling, and is a widely used tool in the study of the combinatorics of tilings and the behavior of dimer systems in statistical physics. Analogous Markov chains are used to randomly generate other structures on various twodimensional lattices. This paper presents techniques which prove for the first time that, in many interesting cases, a small number of random moves suffice to obtain a uniform distribution.
Fastest Mixing Markov Chain on A Graph
 SIAM REVIEW
, 2003
"... We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Mar ..."
Abstract

Cited by 88 (15 self)
 Add to MetaCart
We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Markov chain, is determined by the second largest (in magnitude) eigenvalue of the transition matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the second largest magnitude eigenvalue, i.e., the problem of finding the fastest mixing Markov chain on the graph. We show that
On Markov chains for independent sets
 Journal of Algorithms
, 1997
"... Random independent sets in graphs arise, for example, in statistical physics, in the hardcore model of a gas. A new rapidly mixing Markov chain for independent sets is defined in this paper. We show that it is rapidly mixing for a wider range of values of the parameter than the LubyVigoda chain, ..."
Abstract

Cited by 66 (16 self)
 Add to MetaCart
Random independent sets in graphs arise, for example, in statistical physics, in the hardcore model of a gas. A new rapidly mixing Markov chain for independent sets is defined in this paper. We show that it is rapidly mixing for a wider range of values of the parameter than the LubyVigoda chain, the best previously known. Moreover the new chain is apparently more rapidly mixing than the LubyVigoda chain for larger values of (unless the maximum degree of the graph is 4). An extension of the chain to independent sets in hypergraphs is described. This chain gives an efficient method for approximately counting the number of independent sets of hypergraphs with maximum degree two, or with maximum degree three and maximum edge size three. Finally, we describe a method which allows one, under certain circumstances, to deduce the rapid mixing of one Markov chain from the rapid mixing of another, with the same state space and stationary distribution. This method is applied to two Markov ch...
Mixing times of lozenge tiling and card shuffling Markov chains
, 1997
"... Abstract. We show how to combine Fourier analysis with coupling arguments to bound the mixing times of a variety of Markov chains. The mixing time is the number of steps a Markov chain takes to approach its equilibrium distribution. One application is to a class of Markov chains introduced by Luby, ..."
Abstract

Cited by 66 (1 self)
 Add to MetaCart
Abstract. We show how to combine Fourier analysis with coupling arguments to bound the mixing times of a variety of Markov chains. The mixing time is the number of steps a Markov chain takes to approach its equilibrium distribution. One application is to a class of Markov chains introduced by Luby, Randall, and Sinclair to generate random tilings of regions by lozenges. For an ℓ×ℓ region we bound the mixing time by O(ℓ 4 log ℓ), which improves on the previous bound of O(ℓ 7), and we show the new bound to be essentially tight. In another application we resolve a few questions raised by Diaconis and SaloffCoste by lower bounding the mixing time of various cardshuffling Markov chains. Our lower bounds are within a constant factor of their upper bounds. When we use our methods to modify a pathcoupling analysis of Bubley and Dyer, we obtain an O(n 3 log n) upper bound on the mixing time of the KarzanovKhachiyan Markov chain for linear extensions. 1.
Convergence rates of Markov chains
, 1995
"... this paper, we attempt to describe various mathematical techniques which have been used to bound such rates of convergence. In particular, we describe eigenvalue analysis, random walks on groups, coupling, and minorization conditions. Connections are made to modern areas of research wherever possibl ..."
Abstract

Cited by 62 (4 self)
 Add to MetaCart
this paper, we attempt to describe various mathematical techniques which have been used to bound such rates of convergence. In particular, we describe eigenvalue analysis, random walks on groups, coupling, and minorization conditions. Connections are made to modern areas of research wherever possible. Elements of linear algebra, probability theory, group theory, and measure theory are used, but efforts are made to keep the presentation elementary and accessible. Acknowledgements. I thank Eric Belsley for comments and corrections, and thank Persi Diaconis for introducing me to this subject and teaching me so much. 1. Introduction and motivation.