Results 1  10
of
52
A Syntactic Approach to Type Soundness
 Information and Computation
, 1992
"... We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the la ..."
Abstract

Cited by 604 (23 self)
 Add to MetaCart
(Show Context)
We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the language semantics. The approach easily extends from polymorphic functional languages to imperative languages that provide references, exceptions, continuations, and similar features. We illustrate the technique with a type soundness theorem for the core of Standard ML, which includes the first type soundness proof for polymorphic exceptions and continuations. 1 Type Soundness Static type systems for programming languages attempt to prevent the occurrence of type errors during execution. A definition of type error depends on a specific language and type system, but always includes the use of a function on arguments for which it is not defined, and the attempted application of a nonfunction. ...
Comprehending Monads
 Mathematical Structures in Computer Science
, 1992
"... Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised t ..."
Abstract

Cited by 505 (16 self)
 Add to MetaCart
Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised to an arbitrary monad, and how the resulting programming feature can concisely express in a pure functional language some programs that manipulate state, handle exceptions, parse text, or invoke continuations. A new solution to the old problem of destructive array update is also presented. No knowledge of category theory is assumed.
Abstract interpretation frameworks
 Journal of Logic and Computation
, 1992
"... We introduce abstract interpretation frameworks which are variations on the archetypal framework using Galois connections between concrete and abstract semantics, widenings and narrowings and are obtained by relaxation of the original hypotheses. We consider various ways of establishing the correctn ..."
Abstract

Cited by 274 (25 self)
 Add to MetaCart
(Show Context)
We introduce abstract interpretation frameworks which are variations on the archetypal framework using Galois connections between concrete and abstract semantics, widenings and narrowings and are obtained by relaxation of the original hypotheses. We consider various ways of establishing the correctness of an abstract interpretation depending on how the relation between the concrete and abstract semantics is defined. We insist upon those correspondences allowing for the inducing of the approximate abstract semantics from the concrete one. Furthermore we study various notions interpretation.
The Discoveries of Continuations
, 1993
"... We give a brief account of the discoveries of continuations and related concepts by, A. Van Wijngaarden , A. W. Mazurkiewicz , F. L. Morris , C. P. Wadsworth , J. H. Morris , M. J. Fischer , and S. K. Abdali. ..."
Abstract

Cited by 126 (2 self)
 Add to MetaCart
We give a brief account of the discoveries of continuations and related concepts by, A. Van Wijngaarden , A. W. Mazurkiewicz , F. L. Morris , C. P. Wadsworth , J. H. Morris , M. J. Fischer , and S. K. Abdali.
Relational Properties of Domains
 Information and Computation
, 1996
"... New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a ..."
Abstract

Cited by 102 (5 self)
 Add to MetaCart
New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a property of mixed initiality/finality is transferred to a corresponding property of invariant relations. The existence of invariant relations is proved under completeness assumptions about the notion of relation. We show how this leads to simpler proofs of the computational adequacy of denotational semantics for functional programming languages with userdeclared datatypes. We show how the initiality/finality property of invariant relations can be specialized to yield an induction principle for admissible subsets of recursively defined domains, generalizing the principle of structural induction for inductively defined sets. We also show how the initiality /finality property gives rise to the coinduct...
Bananas in Space: Extending Fold and Unfold to Exponential Types
, 1995
"... Fold and unfold are general purpose functionals for processing and constructing lists. By using the categorical approach of modelling recursive datatypes as fixed points of functors, these functionals and their algebraic properties were generalised from lists to polynomial (sumofproduct) datatypes ..."
Abstract

Cited by 96 (6 self)
 Add to MetaCart
(Show Context)
Fold and unfold are general purpose functionals for processing and constructing lists. By using the categorical approach of modelling recursive datatypes as fixed points of functors, these functionals and their algebraic properties were generalised from lists to polynomial (sumofproduct) datatypes. However, the restriction to polynomial datatypes is a serious limitation: it precludes the use of exponentials (functionspaces) , whereas it is central to functional programming that functions are firstclass values, and so exponentials should be able to be used freely in datatype definitions. In this paper we explain how Freyd's work on modelling recursive datatypes as fixed points of difunctors shows how to generalise fold and unfold from polynomial datatypes to those involving exponentials. Knowledge of category theory is not required; we use Gofer throughout as our metalanguage, making extensive use of constructor classes. 1 Introduction During the 1980s, Bird and Meertens [6, 22] d...
A Generic Account of ContinuationPassing Styles
 Proceedings of the Twentyfirst Annual ACM Symposium on Principles of Programming Languages
, 1994
"... We unify previous work on the continuationpassing style (CPS) transformations in a generic framework based on Moggi's computational metalanguage. This framework is used to obtain CPS transformations for a variety of evaluation strategies and to characterize the corresponding administrative re ..."
Abstract

Cited by 90 (35 self)
 Add to MetaCart
(Show Context)
We unify previous work on the continuationpassing style (CPS) transformations in a generic framework based on Moggi's computational metalanguage. This framework is used to obtain CPS transformations for a variety of evaluation strategies and to characterize the corresponding administrative reductions and inverse transformations. We establish generic formal connections between operational semantics and equational theories. Formal properties of transformations for specific evaluation orders follow as corollaries. Essentially, we factor transformations through Moggi's computational metalanguage. Mapping terms into the metalanguage captures computational properties (e.g., partiality, strictness) and evaluation order explicitly in both the term and the type structure of the metalanguage. The CPS transformation is then obtained by applying a generic transformation from terms and types in the metalanguage to CPS terms and types, based on a typed term representation of the continuation ...
Two semantic models of objectoriented languages
 Theoretical Aspects of ObjectOriented Programming. MIT
, 1994
"... We present and compare two models of objectoriented languages. The first we call the closure model because it uses closures to encapsulate side effects on objects, and accordingly makes the operations on an object a part of that object. It is shown that this denotational framework is adequate to ex ..."
Abstract

Cited by 41 (2 self)
 Add to MetaCart
We present and compare two models of objectoriented languages. The first we call the closure model because it uses closures to encapsulate side effects on objects, and accordingly makes the operations on an object a part of that object. It is shown that this denotational framework is adequate to explain classes, instantiation, and inheritance in the style of Simula as well as Smalltalk–80. The second we call the data structure model because it mimics the implementations of data structure languages like CLU in representing objects by records of instance variables, while keeping the operations on objects separate from the objects themselves. This yields a model which is very simple, at least superficially. Both the models are presented by way of a sequence of languages, culminating in a language with Smalltalk–80style inheritance. The mathematical relationship between them is then discussed and it is shown that the models give equivalent results. It will emerge from this discussion that more appropriate names for the two models might be the fixedpoint model and the selfapplication model. 1
Polymorphic type assignment and CPS conversion
 LISP and Symbolic Computation
, 1993
"... Meyer and Wand established that the type of a term in the simply typedcalculus may be related in a straightforward manner to the type of its callbyvalue CPS transform. This typing property maybe extended to Schemelike continuationpassing primitives, from which the soundness of these extensions ..."
Abstract

Cited by 37 (10 self)
 Add to MetaCart
(Show Context)
Meyer and Wand established that the type of a term in the simply typedcalculus may be related in a straightforward manner to the type of its callbyvalue CPS transform. This typing property maybe extended to Schemelike continuationpassing primitives, from which the soundness of these extensions follows. We study the extension of these results to the DamasMilner polymorphic type assignment system under both the callbyvalue and callbyname interpretations. We obtain CPS transforms for the callbyvalue interpretation, provided that the polymorphic let is restricted to values, and for the callbyname interpretation with no restrictions. We prove that there is no callbyvalue CPS transform for the full DamasMilner language that validates the MeyerWand typing property and is equivalent to the standard callbyvalue transform up toconversion. 1
Extensible Denotational Language Specifications
 SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SOFTWARE, NUMBER 789 IN LNCS
, 1994
"... Traditional denotational semantics assigns radically different meanings to one and the same phrase depending on the rest of the programming language. If the language is purely functional, the denotation of a numeral is a function from environments to integers. But, in a functional language with impe ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
Traditional denotational semantics assigns radically different meanings to one and the same phrase depending on the rest of the programming language. If the language is purely functional, the denotation of a numeral is a function from environments to integers. But, in a functional language with imperative control operators, a numeral denotes a function from environments and continuations to integers. This paper introduces a new format for denotational language specifications, extended direct semantics, that accommodates orthogonal extensions of a language without changing the denotations of existing phrases. An extended direct semantics always maps a numeral to the same denotation: the injection of the corresponding number into the domain of values. In general, the denotation of a phrase in a functional language is always a projection of the denotation of the same phrase in the semantics of an extended languageno matter what the extension is. Based on extended direct semantics, i...