Results 1  10
of
61
Bananas in Space: Extending Fold and Unfold to Exponential Types
, 1995
"... Fold and unfold are general purpose functionals for processing and constructing lists. By using the categorical approach of modelling recursive datatypes as fixed points of functors, these functionals and their algebraic properties were generalised from lists to polynomial (sumofproduct) datatypes ..."
Abstract

Cited by 95 (6 self)
 Add to MetaCart
Fold and unfold are general purpose functionals for processing and constructing lists. By using the categorical approach of modelling recursive datatypes as fixed points of functors, these functionals and their algebraic properties were generalised from lists to polynomial (sumofproduct) datatypes. However, the restriction to polynomial datatypes is a serious limitation: it precludes the use of exponentials (functionspaces) , whereas it is central to functional programming that functions are firstclass values, and so exponentials should be able to be used freely in datatype definitions. In this paper we explain how Freyd's work on modelling recursive datatypes as fixed points of difunctors shows how to generalise fold and unfold from polynomial datatypes to those involving exponentials. Knowledge of category theory is not required; we use Gofer throughout as our metalanguage, making extensive use of constructor classes. 1 Introduction During the 1980s, Bird and Meertens [6, 22] d...
Polytypic programming
, 2000
"... ... PolyP extends a functional language (a subset of Haskell) with a construct for defining polytypic functions by induction on the structure of userdefined datatypes. Programs in the extended language are translated to Haskell. PolyLib contains powerful structured recursion operators like catamorp ..."
Abstract

Cited by 92 (12 self)
 Add to MetaCart
... PolyP extends a functional language (a subset of Haskell) with a construct for defining polytypic functions by induction on the structure of userdefined datatypes. Programs in the extended language are translated to Haskell. PolyLib contains powerful structured recursion operators like catamorphisms, maps and traversals, as well as polytypic versions of a number of standard functions from functional programming: sum, length, zip, (==), (6), etc. Both the specification of the library and a PolyP implementation are presented.
Nested datatypes
 In MPC’98, volume 1422 of LNCS
, 1998
"... Abstract. A nested datatype, also known as a nonregular datatype, is a parametrised datatype whose declaration involves different instances of the accompanying type parameters. Nested datatypes have been mostly ignored in functional programming until recently, but they are turning out to be both th ..."
Abstract

Cited by 79 (5 self)
 Add to MetaCart
Abstract. A nested datatype, also known as a nonregular datatype, is a parametrised datatype whose declaration involves different instances of the accompanying type parameters. Nested datatypes have been mostly ignored in functional programming until recently, but they are turning out to be both theoretically important and useful in practice. The aim of this paper is to suggest a functorial semantics for such datatypes, with an associated calculational theory that mirrors and extends the standard theory for regular datatypes. Though elegant and generic, the proposed approach appears more limited than one would like, and some of the limitations are discussed. 1
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 43 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Calculate Polytypically!
 In PLILP'96, volume 1140 of LNCS
, 1996
"... A polytypic function definition is a function definition that is parametrised with a datatype. It embraces a class of algorithms. As an example we define a simple polytypic "crush" combinator that can be used to calculate polytypically. The ability to define functions polytypically adds another leve ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
A polytypic function definition is a function definition that is parametrised with a datatype. It embraces a class of algorithms. As an example we define a simple polytypic "crush" combinator that can be used to calculate polytypically. The ability to define functions polytypically adds another level of flexibility in the reusability of programming idioms and in the design of libraries of interoperable components.
On Hoare Logic and Kleene Algebra with Tests
"... We show that Kleene algebra with tests (KAT) subsumes propositional Hoare logic (PHL). Thus the specialized syntax and deductive apparatus of Hoare logic are inessential and can be replaced by simple equational reasoning. In addition, we show that all relationally valid inference rules are derivable ..."
Abstract

Cited by 40 (13 self)
 Add to MetaCart
We show that Kleene algebra with tests (KAT) subsumes propositional Hoare logic (PHL). Thus the specialized syntax and deductive apparatus of Hoare logic are inessential and can be replaced by simple equational reasoning. In addition, we show that all relationally valid inference rules are derivable in KAT and that deciding the relational validity of such rules is PSPACEcomplete.
Elements of a Relational Theory of Datatypes
 Formal Program Development, volume 755 of Lecture Notes in Computer Science
, 1993
"... The "Boom hierarchy" is a hierarchy of types that begins at the level of trees and includes lists, bags and sets. This hierarchy forms the basis for the calculus of total functions developed by Bird and Meertens, and which has become known as the "BirdMeertens formalism". This paper describes a hie ..."
Abstract

Cited by 35 (0 self)
 Add to MetaCart
The "Boom hierarchy" is a hierarchy of types that begins at the level of trees and includes lists, bags and sets. This hierarchy forms the basis for the calculus of total functions developed by Bird and Meertens, and which has become known as the "BirdMeertens formalism". This paper describes a hierarchy of types that logically precedes the Boom hierarchy. We show how the basic operators of the BirdMeertens formalism (map, reduce and filter) can be introduced in a logical sequence by beginning with a very simple structure and successively refining that structure. The context of this work is a relational theory of datatypes, rather than a calculus of total functions. Elements of the theory necessary to the later discussion are summarised at the beginning of the paper. 1 Introduction This paper reports on an experiment into the design of a programming algebra. The algebra is an algebra of datatypes oriented towards the calculation of polymorphic functions and relations. Its design d...
Generalised Folds for Nested Datatypes
 Formal Aspects of Computing
, 1999
"... Nested datatypes generalise regular datatypes in much the same way that contextfree languages generalise regular ones. Although the categorical semantics of nested types turns out to be similar to the regular case, the fold functions are more limited because they can only describe natural transform ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
Nested datatypes generalise regular datatypes in much the same way that contextfree languages generalise regular ones. Although the categorical semantics of nested types turns out to be similar to the regular case, the fold functions are more limited because they can only describe natural transformations. Practical considerations therefore dictate the introduction of a generalised fold function in which this limitation can be overcome. In the paper we show how to construct generalised folds systematically for each nested datatype, and show that they possess a uniqueness property analogous to that of ordinary folds. As a consequence, generalised folds satisfy fusion properties similar to those developed for regular datatypes. Such properties form the core of an effective calculational theory of inductive datatypes.
Declarative Continuations and Categorical Duality
, 1989
"... This thesis presents a formalism for reasoning about continuations in a categorical setting. It points out how values and continuations ca n be seen as categorically dual concepts, and that this symmetry extends to not only data types, but also control structures, evaluation strategies and higheror ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
This thesis presents a formalism for reasoning about continuations in a categorical setting. It points out how values and continuations ca n be seen as categorically dual concepts, and that this symmetry extends to not only data types, but also control structures, evaluation strategies and higherorder constructs. The central idea is a view of continuations as a declarative concept, rather than an imperative one, and the implicat ions of this make up the spine of the presentation. A symmetrical extension of the typed *calculus is introduced, where values and continuations are treated as opposites, permitting a mirrorimage syntax for dual categorical concepts like products and coproducts. An implementable semantic description and a static type system for this calculus are given. A purely categorical description of the language is also obtained, through a correspondence with a system of combinatory logic, similar to a cartesian closed category, but with a completely symmetrical set of axioms. Finally, a number of possible practical applications and directions for further research are suggested.