Results 11  20
of
64
Google’s MapReduce Programming Model — Revisited
"... Google’s MapReduce programming model serves for processing large data sets in a massively parallel manner. We deliver the first rigorous description of the model including its advancement as Google’s domainspecific language Sawzall. To this end, we reverseengineer the seminal papers on MapReduce a ..."
Abstract

Cited by 37 (1 self)
 Add to MetaCart
Google’s MapReduce programming model serves for processing large data sets in a massively parallel manner. We deliver the first rigorous description of the model including its advancement as Google’s domainspecific language Sawzall. To this end, we reverseengineer the seminal papers on MapReduce and Sawzall, and we capture our findings as an executable specification. We also identify and resolve some obscurities in the informal presentation given in the seminal papers. We use typed functional programming (specifically Haskell) as a tool for design recovery and executable specification. Our development comprises three components: (i) the basic program skeleton that underlies MapReduce computations; (ii) the opportunities for parallelism in executing MapReduce computations; (iii) the fundamental characteristics of Sawzall’s aggregators as an advancement of the MapReduce approach. Our development does not formalize the more implementational aspects of an actual, distributed execution of MapReduce computations.
Generalised Folds for Nested Datatypes
 Formal Aspects of Computing
, 1999
"... Nested datatypes generalise regular datatypes in much the same way that contextfree languages generalise regular ones. Although the categorical semantics of nested types turns out to be similar to the regular case, the fold functions are more limited because they can only describe natural transform ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
Nested datatypes generalise regular datatypes in much the same way that contextfree languages generalise regular ones. Although the categorical semantics of nested types turns out to be similar to the regular case, the fold functions are more limited because they can only describe natural transformations. Practical considerations therefore dictate the introduction of a generalised fold function in which this limitation can be overcome. In the paper we show how to construct generalised folds systematically for each nested datatype, and show that they possess a uniqueness property analogous to that of ordinary folds. As a consequence, generalised folds satisfy fusion properties similar to those developed for regular datatypes. Such properties form the core of an effective calculational theory of inductive datatypes.
Generic Haskell: applications
 In Generic Programming, Advanced Lectures, volume 2793 of LNCS
, 2003
"... Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes discuss three advanced generic programming applications: generic dictionaries, compressing XML documents, and the zipper: a data structure used to represent a tree together with a s ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes discuss three advanced generic programming applications: generic dictionaries, compressing XML documents, and the zipper: a data structure used to represent a tree together with a subtree that is the focus of attention, where that focus may move left, right, up or down the tree. When describing and implementing these examples, we will encounter some advanced features of Generic Haskell, such as typeindexed data types, dependencies between and generic abstractions of generic functions, adjusting a generic function using a default case, and generic functions with a special case for a particular constructor.
Polytypic Pattern Matching
 In Conference Record of FPCA '95, SIGPLANSIGARCHWG2.8 Conference on Functional Programming Languages and Computer Architecture
, 1995
"... The (exact) pattern matching problem can be informally specified as follows: given a pattern and a text, find all occurrences of the pattern in the text. The pattern and the text may both be lists, or they may both be trees, or they may both be multidimensional arrays, etc. This paper describes a g ..."
Abstract

Cited by 28 (8 self)
 Add to MetaCart
The (exact) pattern matching problem can be informally specified as follows: given a pattern and a text, find all occurrences of the pattern in the text. The pattern and the text may both be lists, or they may both be trees, or they may both be multidimensional arrays, etc. This paper describes a general patternmatching algorithm for all datatypes definable as an initial object in a category of F algebras, where F is a regular functor. This class of datatypes includes mutual recursive datatypes and lots of different kinds of trees. The algorithm is a generalisation of the Knuth, Morris, Pratt like patternmatching algorithm on trees first described by Hoffmann and O'Donnell. 1 Introduction Most editors provide a search function that takes a string of symbols and returns the first position in the text being edited at which this string of symbols occurs. The string of symbols is called a pattern, and the algorithm that detects the position at which a pattern occurs is called a (exa...
Fold and Unfold for Program Semantics
 In Proc. 3rd ACM SIGPLAN International Conference on Functional Programming
, 1998
"... In this paper we explain how recursion operators can be used to structure and reason about program semantics within a functional language. In particular, we show how the recursion operator fold can be used to structure denotational semantics, how the dual recursion operator unfold can be used to str ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
In this paper we explain how recursion operators can be used to structure and reason about program semantics within a functional language. In particular, we show how the recursion operator fold can be used to structure denotational semantics, how the dual recursion operator unfold can be used to structure operational semantics, and how algebraic properties of these operators can be used to reason about program semantics. The techniques are explained with the aid of two main examples, the first concerning arithmetic expressions, and the second concerning Milner's concurrent language CCS. The aim of the paper is to give functional programmers new insights into recursion operators, program semantics, and the relationships between them. 1 Introduction Many computations are naturally expressed as recursive programs defined in terms of themselves, and properties proved of such programs using some form of inductive argument. Not surprisingly, many programs will have a similar recursive stru...
Datatype Laws without Signatures
, 1996
"... ing from syntax. Conventionally an equation for algebra ' is just a pair of terms built from variables, the constituent operations of ' , and some fixed standard operations. An equation is valid if the two terms are equal for all values of the variables. We are going to model a syntactic term as a m ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
ing from syntax. Conventionally an equation for algebra ' is just a pair of terms built from variables, the constituent operations of ' , and some fixed standard operations. An equation is valid if the two terms are equal for all values of the variables. We are going to model a syntactic term as a morphism that has the values of the variables as source. For example, the two terms ` x ' and ` x join x ' (with variable x of type tree ) are modeled by morphisms id and id \Delta id ; join of type tree ! tree . So, an equation for ' is modeled by a pair of terms (T '; T 0 ') , T and T 0 being mappings of morphisms which we call `transformers'. This faces us with the following problem: what properties must we require of an arbitrary mapping T in order that it model a classical syntactic Datatype Laws without Signatures 7 term? Or, rather, what properties of classical syntactic terms are semantically essential, and how can we formalise these as properties of a transformer T ? Of course...
Recursion Schemes from Comonads
, 2001
"... . Within the setting of the categorical approach to programming with total functions, a \manyinone" recursion scheme is introduced that neatly unies a variety of recursion schemes looking as diverging generalizations of the basic recursion scheme of iteration. The scheme is doubly generic: in addi ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
. Within the setting of the categorical approach to programming with total functions, a \manyinone" recursion scheme is introduced that neatly unies a variety of recursion schemes looking as diverging generalizations of the basic recursion scheme of iteration. The scheme is doubly generic: in addition to behaving uniformly with respect to a functor determining an inductive type, it is also uniform in a comonad and a distributive law which together determine a particular recursion scheme for this inductive type. By way of examples, it is shown to subsume iteration, a scheme subsuming primitive recursion, and a scheme subsuming courseofvalue iteration.
Comparing Libraries for Generic Programming in Haskell
, 2008
"... Datatypegeneric programming is defining functions that depend on the structure, or “shape”, of datatypes. It has been around for more than 10 years, and a lot of progress has been made, in particular in the lazy functional programming language Haskell. There are more than 10 proposals for generic p ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
Datatypegeneric programming is defining functions that depend on the structure, or “shape”, of datatypes. It has been around for more than 10 years, and a lot of progress has been made, in particular in the lazy functional programming language Haskell. There are more than 10 proposals for generic programming libraries or language extensions for Haskell. To compare and characterize the many generic programming libraries in a typed functional language, we introduce a set of criteria and develop a generic programming benchmark: a set of characteristic examples testing various facets of datatypegeneric programming. We have implemented the benchmark for nine existing Haskell generic programming libraries and present the evaluation of the libraries. The comparison is useful for reaching a common standard for generic programming, but also for a programmer who has to choose a particular approach for datatypegeneric programming.
Monadic Maps and Folds for Arbitrary Datatypes
 Memoranda Informatica, University of Twente
, 1994
"... Each datatype constructor comes equiped not only with a socalled map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting from the ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Each datatype constructor comes equiped not only with a socalled map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting from the category of algebras in a given category to a certain other category of algebras in the Kleisli category related to the monad.
Parallel Implementation of Tree Skeletons
 Journal of Parallel and Distributed Computing
, 1995
"... Trees are a useful data type, but they are not routinely included in parallel programming systems because their irregular structure makes them seem hard to compute with efficiently. We present a method for constructing implementations of skeletons, highlevel homomorphic operations on trees, that ex ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
Trees are a useful data type, but they are not routinely included in parallel programming systems because their irregular structure makes them seem hard to compute with efficiently. We present a method for constructing implementations of skeletons, highlevel homomorphic operations on trees, that execute in parallel. In particular, we consider the case where the size of the tree is much larger than the the number of processors available, so that tree data must be partitioned. The approach uses the theory of categorical data types to derive implementation templates based on tree contraction. Many useful tree operations can be computed in time logarithmic in the size of their argument, on a wide range of parallel systems. 1 Contribution One common approach to generalpurpose parallel computation is based on packaging complex operations as templates, or skeletons [3, 12]. Skeletons encapsulate the control and data flow necessary to compute useful operations. This permits software to be...