Results 21  30
of
1,118
A New Approach to Generic Functional Programming
 In The 27th Annual ACM SIGPLANSIGACT Symposium on Principles of Programming Languages
, 1999
"... This paper describes a new approach to generic functional programming, which allows us to define functions generically for all datatypes expressible in Haskell. A generic function is one that is defined by induction on the structure of types. Typical examples include pretty printers, parsers, and co ..."
Abstract

Cited by 95 (13 self)
 Add to MetaCart
This paper describes a new approach to generic functional programming, which allows us to define functions generically for all datatypes expressible in Haskell. A generic function is one that is defined by induction on the structure of types. Typical examples include pretty printers, parsers, and comparison functions. The advanced type system of Haskell presents a real challenge: datatypes may be parameterized not only by types but also by type constructors, type definitions may involve mutual recursion, and recursive calls of type constructors can be arbitrarily nested. We show that despite this complexitya generic function is uniquely defined by giving cases for primitive types and type constructors (such as disjoint unions and cartesian products). Given this information a generic function can be specialized to arbitrary Haskell datatypes. The key idea of the approach is to model types by terms of the simply typed calculus augmented by a family of recursion operators. While co...
Operational Semantics and Polymorphic Type Inference
, 1988
"... Three languages with polymorphic type disciplines are discussed, namely the *calculus with Milner's polymorphic type discipline; a language with imperative features (polymorphic references); and a skeletal module language with structures, signatures and functors. In each of the two first case ..."
Abstract

Cited by 93 (2 self)
 Add to MetaCart
Three languages with polymorphic type disciplines are discussed, namely the *calculus with Milner's polymorphic type discipline; a language with imperative features (polymorphic references); and a skeletal module language with structures, signatures and functors. In each of the two first cases we show that the type inference system is consistent with an operational dynamic semantics. On the module level, polymorphic types correspond to signatures. There is a notion of principal signature. Socalled signature checking is the module level equivalent of type checking. In particular, there exists an algorithm which either fails or produces a principal signature.
A Generic Account of ContinuationPassing Styles
 Proceedings of the Twentyfirst Annual ACM Symposium on Principles of Programming Languages
, 1994
"... We unify previous work on the continuationpassing style (CPS) transformations in a generic framework based on Moggi's computational metalanguage. This framework is used to obtain CPS transformations for a variety of evaluation strategies and to characterize the corresponding administrative re ..."
Abstract

Cited by 87 (34 self)
 Add to MetaCart
We unify previous work on the continuationpassing style (CPS) transformations in a generic framework based on Moggi's computational metalanguage. This framework is used to obtain CPS transformations for a variety of evaluation strategies and to characterize the corresponding administrative reductions and inverse transformations. We establish generic formal connections between operational semantics and equational theories. Formal properties of transformations for specific evaluation orders follow as corollaries. Essentially, we factor transformations through Moggi's computational metalanguage. Mapping terms into the metalanguage captures computational properties (e.g., partiality, strictness) and evaluation order explicitly in both the term and the type structure of the metalanguage. The CPS transformation is then obtained by applying a generic transformation from terms and types in the metalanguage to CPS terms and types, based on a typed term representation of the continuation ...
Combinatory Reduction Systems: introduction and survey
 THEORETICAL COMPUTER SCIENCE
, 1993
"... Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simpl ..."
Abstract

Cited by 83 (9 self)
 Add to MetaCart
Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who introduced a restricted class of CRSs and, under the assumption of orthogonality, proved confluence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair) and leftlinear (no global comparison of terms necessary). We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive power, and give an outline of a short proof of confluence. This proof is a direct generalization of Aczel's original proof, which is close to the wellknown confluence proof for λcalculus by Tait and MartinLof. There is a wellknown connection between the para...
A theory of primitive objects: Untyped and firstorder systems
 In Proc. TACS’94, Theoretical Aspects of Computing Sofware
, 1994
"... We introduce simple object calculi that support method override and object subsumption. We give an untyped calculus, typing rules, and equational rules. We illustrate the expressiveness of our calculi and the pitfalls that we avoid. 1. ..."
Abstract

Cited by 78 (11 self)
 Add to MetaCart
We introduce simple object calculi that support method override and object subsumption. We give an untyped calculus, typing rules, and equational rules. We illustrate the expressiveness of our calculi and the pitfalls that we avoid. 1.
Mechanizing the Metatheory of Standard ML
, 2006
"... We present an internal language with equivalent expressive power to Standard ML, and discuss its formalization in LF and the machinechecked verification of its type safety in Twelf. The internal language is intended to serve as the target of elaboration in an elaborative semantics for Standard ML i ..."
Abstract

Cited by 73 (9 self)
 Add to MetaCart
We present an internal language with equivalent expressive power to Standard ML, and discuss its formalization in LF and the machinechecked verification of its type safety in Twelf. The internal language is intended to serve as the target of elaboration in an elaborative semantics for Standard ML in the style of Harper and Stone. Therefore, it includes all the programming mechanisms necessary to implement Standard ML, including translucent modules, abstraction, polymorphism, higher kinds, references, exceptions, recursive types, and recursive functions. Our successful formalization of the proof involved a careful interplay between the precise formulations of the various mechanisms, and required the invention of new representation and proof techniques of general interest.
The mystery of the tower revealed: A nonreflective description of the reflective tower
 Lisp and Symbolic Computation
, 1988
"... In an important series of papers [8, 9], Brian Smith has discussed the nature of programs that know about their text and the context in which they are executed. He called this kind of knowledge reflection. Smith proposed a programming language, called 3LISP, which embodied such selfknowledge in th ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
In an important series of papers [8, 9], Brian Smith has discussed the nature of programs that know about their text and the context in which they are executed. He called this kind of knowledge reflection. Smith proposed a programming language, called 3LISP, which embodied such selfknowledge in the domain of metacircular interpreters. Every 3LISP program is interpreted by a metacircular interpreter, also written in 3LISP. This gives rise to a picture of an infinite tower of metacircular interpreters, each being interpreted by the one above it. Such a metaphor poses a serious challenge for conventional modes of understanding of programming languages. In our earlier work on reflection [4], we showed how a useful species of reflection could be modeled without the use of towers. In this paper, we give a semantic account of the reflective tower. This account is selfcontained in the sense that it does not employ reflection to explain reflection. 1. Modeling reflection Reflective programming languages were introduced in [8, 9] to study programs that need knowledge of their own behavior. In artificial intelligence, this kind of knowledge is needed, for example, in programs that must explain their behavior to
A Polymorphic Record Calculus and Its Compilation
 ACM Transactions on Programming Languages and Systems
, 1995
"... this article appeared in Proceedings of ACM Symposium on Principles of Programming Languages, 1992, under the title \A compilation method for MLstyle polymorphic record calculi." This work was partly supported by the Japanese Ministry of Education under scienti c research grant no. 06680319. A ..."
Abstract

Cited by 72 (8 self)
 Add to MetaCart
this article appeared in Proceedings of ACM Symposium on Principles of Programming Languages, 1992, under the title \A compilation method for MLstyle polymorphic record calculi." This work was partly supported by the Japanese Ministry of Education under scienti c research grant no. 06680319. Author's address: Research Institute for Mathematical Sciences, Kyoto University, Sakyoku, Kyoto 60601, JAPAN; email: ohori@kurims.kyotou.ac.jp Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of ACM. To copy otherwise, or to republish, requires a fee and/or speci c permission. c 1999 ACM 01640925/99/01000111 $00.75
An Analysis of Girard's Paradox
 In Symposium on Logic in Computer Science
, 1986
"... this article is to present applications of the BuraliForti paradox to some formal systems. The first such application is due to J.Y. Girard, who showed ..."
Abstract

Cited by 68 (2 self)
 Add to MetaCart
this article is to present applications of the BuraliForti paradox to some formal systems. The first such application is due to J.Y. Girard, who showed