Results 1  10
of
59
Combinatorial Auctions with Decreasing Marginal Utilities
, 2001
"... This paper considers combinatorial auctions among such submodular buyers. The valuations of such buyers are placed within a hierarchy of valuations that exhibit no complementarities, a hierarchy that includes also OR and XOR combinations of singleton valuations, and valuations satisfying the gross s ..."
Abstract

Cited by 208 (25 self)
 Add to MetaCart
This paper considers combinatorial auctions among such submodular buyers. The valuations of such buyers are placed within a hierarchy of valuations that exhibit no complementarities, a hierarchy that includes also OR and XOR combinations of singleton valuations, and valuations satisfying the gross substitutes property. Those last valuations are shown to form a zeromeasure subset of the submodular valuations that have positive measure. While we show that the allocation problem among submodular valuations is NPhard, we present an efficient greedy 2approximation algorithm for this case and generalize it to the case of limited complementarities. No such approximation algorithm exists in a setting allowing for arbitrary complementarities. Some results about strategic aspects of combinatorial auctions among players with decreasing marginal utilities are also presented.
The communication requirements of efficient allocations and supporting prices
 Journal of Economic Theory
, 2006
"... We show that any communication finding a Pareto efficient allocation in a privateinformation economy must also discover supporting Lindahl prices. In particular, efficient allocation of L indivisible objects requires naming a price for each of the 2 L ¡1 bundles. Furthermore, exponential communicat ..."
Abstract

Cited by 139 (18 self)
 Add to MetaCart
We show that any communication finding a Pareto efficient allocation in a privateinformation economy must also discover supporting Lindahl prices. In particular, efficient allocation of L indivisible objects requires naming a price for each of the 2 L ¡1 bundles. Furthermore, exponential communication in L is needed just to ensure a higher share of surplus than that realized by auctioning all items as a bundle, or even a higher expected surplus (for some probability distribution over valuations). When the valuations are submodular, efficiency still requires exponential communication (and fully polynomial approximation is impossible). When the objects are homogeneous, arbitrarily good approximation is obtained using exponentially less communication than that needed for exact efficiency.
Frugal path mechanisms
, 2002
"... We consider the problem of selecting a low cost s − t path in a graph, where the edge costs are a secret known only to the various economic agents who own them. To solve this problem, Nisan and Ronen applied the celebrated VickreyClarkeGroves (VCG) mechanism, which pays a premium to induce the edg ..."
Abstract

Cited by 124 (2 self)
 Add to MetaCart
(Show Context)
We consider the problem of selecting a low cost s − t path in a graph, where the edge costs are a secret known only to the various economic agents who own them. To solve this problem, Nisan and Ronen applied the celebrated VickreyClarkeGroves (VCG) mechanism, which pays a premium to induce the edges to reveal their costs truthfully. We observe that this premium can be unacceptably high. There are simple instances where the mechanism pays Θ(k) times the actual cost of the path, even if there is an alternate path available that costs only (1 + ɛ) times as much. This inspires the frugal path problem, which is to design a mechanism that selects a path and induces truthful cost revelation without paying such a high premium. This paper contributes negative results on the frugal path problem. On two large classes of graphs, including ones having three nodedisjoint s − t paths, we prove that no reasonable mechanism can always avoid paying a high premium to induce truthtelling. In particular, we introduce a general class of min function mechanisms, and show that all min function mechanisms can be forced to overpay just as badly as VCG. On the other hand, we prove that (on two large classes of graphs) every truthful mechanism satisfying some reasonable properties is a min function mechanism. 1
Vickrey Prices and Shortest Paths: What is an edge worth?
 In Proceedings of the 42nd Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos
, 2001
"... We solve a shortest path problem that is motivated by recent interest in pricing networks or other computational resources. Informally, how much is an edge in a network worth to a user who wants to send data between two nodes along a shortest path? If the network is a decentralized entity, such as t ..."
Abstract

Cited by 107 (6 self)
 Add to MetaCart
(Show Context)
We solve a shortest path problem that is motivated by recent interest in pricing networks or other computational resources. Informally, how much is an edge in a network worth to a user who wants to send data between two nodes along a shortest path? If the network is a decentralized entity, such as the Internet, in which multiple selfinterested agents own different parts of the network, then auctionbased pricing seems appropriate. A celebrated result from auction theory shows that the use of Vickrey pricing motivates the owners of the network resources to bid truthfully. In Vickrey's scheme, each agent is compensated in proportion to the marginal utility he brings to the auction. In the context of shortest path routing, an edge's utility is the value by which it lowers the length of the shortest paththe difference between the shortest path lengths with and without the edge. Our problem is to compute these marginal values for all the edges of the network efficiently. The na ve method requires solving the singlesource shortest path problem up to n times, for an nnode network. We show that the Vickrey prices for all the edges can be computed in the same asymptotic time complexity as one singlesource shortest path problem. This solves an open problem posed by Nisan and Ronen [12]. 1.
ApproximatelyStrategyproof and Tractable MultiUnit Auctions
, 2004
"... We present an approximatelyefficient and approximatelystrategyproof auction mechanism for a singlegood multiunit allocation problem. The bidding language allows marginaldecreasing piecewise constant curves and quantitybased side constraints. We develop a fully polynomialtime approximation sch ..."
Abstract

Cited by 63 (12 self)
 Add to MetaCart
(Show Context)
We present an approximatelyefficient and approximatelystrategyproof auction mechanism for a singlegood multiunit allocation problem. The bidding language allows marginaldecreasing piecewise constant curves and quantitybased side constraints. We develop a fully polynomialtime approximation scheme for the multiunit allocation problem, which computes a approximation in worstcase time , given bids each with a constant number of pieces. We integrate this approximation scheme within a VickreyClarke Groves mechanism and compute payments for an asymptotic cost of ! . The maximal possible gain from manipulation to a bidder in the combined scheme is bounded by 429416716 " is the total surplus in the efficient outcome.
CABOB: A Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions
, 2005
"... Combinatorial auctions where bidders can bid on bundles of items can lead to more economically efficient allocations, but determining the winners is NPcomplete and inapproximable. We present CABOB, a sophisticated optimal search algorithm for the problem. It uses decomposition techniques, upper and ..."
Abstract

Cited by 58 (9 self)
 Add to MetaCart
Combinatorial auctions where bidders can bid on bundles of items can lead to more economically efficient allocations, but determining the winners is NPcomplete and inapproximable. We present CABOB, a sophisticated optimal search algorithm for the problem. It uses decomposition techniques, upper and lower bounding (also across components), elaborate and dynamically chosen bidordering heuristics, and a host of structural observations. CABOB attempts to capture structure in any instance without making assumptions about the instance distribution. Experiments against the fastest prior algorithm, CPLEX 8.0, show that CABOB is often faster, seldom drastically slower, and in many cases drastically faster—especially in cases with structure. CABOB’s search runs in linear space and has significantly better anytime performance than CPLEX. We also uncover interesting aspects of the problem itself. First, problems with short bids, which were hard for the first generation of specialized algorithms, are easy. Second, almost all of the CATS distributions are easy, and the run time is virtually unaffected by the number of goods. Third, we test several random restart strategies, showing that they do not help on this problem—the runtime distribution does not have a heavy tail.
Beyond VCG: Frugality of truthful mechanisms
 In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science
, 2005
"... We study truthful mechanisms for auctions in which the auctioneer is trying to hire a team of agents to perform a complex task, and paying them for their work. As common in the field of mechanism design, we assume that the agents are selfish and will act in such a way as to maximize their profit, wh ..."
Abstract

Cited by 55 (4 self)
 Add to MetaCart
(Show Context)
We study truthful mechanisms for auctions in which the auctioneer is trying to hire a team of agents to perform a complex task, and paying them for their work. As common in the field of mechanism design, we assume that the agents are selfish and will act in such a way as to maximize their profit, which in particular may include misrepresenting their true incurred cost. Our first contribution is a new and natural definition of the frugality ratio of a mechanism, measuring the amount by which a mechanism “overpays”, and extending previous definitions to all monopolyfree set systems. After reexamining several known results in light of this new definition, we proceed to study in detail shortest path auctions and “routofk sets ” auctions. We show that when individual set systems (e.g., graphs) are considered instead of worst cases over all instances, these problems exhibit a rich structure, and the performance of mechanisms may be vastly different. In particular, we show that the wellknown VCG mechanism may be far from optimal in these settings, and we propose and analyze a mechanism that is always within a constant factor of optimal. 1
Partialrevelation VCG mechanism for combinatorial auctions
 In Proceddings of the National Conference on Artificial Intelligence (AAAI
"... Winner determination in combinatorial auctions has received significant interest in the AI community in the last 3 years. Another difficult problem in combinatorial auctions is that of eliciting the bidders ’ preferences. We introduce a progressive, partialrevelation mechanism that determines an ef ..."
Abstract

Cited by 50 (21 self)
 Add to MetaCart
Winner determination in combinatorial auctions has received significant interest in the AI community in the last 3 years. Another difficult problem in combinatorial auctions is that of eliciting the bidders ’ preferences. We introduce a progressive, partialrevelation mechanism that determines an efficient allocation and the Vickrey payments. The mechanism is based on a family of algorithms that explore the natural lattice structure of the bidders ’ combined preferences. The mechanism elicits utilities in a natural sequence, and aims at keeping the amount of elicited information and the effort to compute the information minimal. We present analytical results on the amount of elicitation. We show that no valuequerying algorithm that is constrained to querying feasible bundles can save more elicitation than one of our algorithms. We also show that one of our algorithms can determine the Vickrey payments as a costless byproduct of determining an optimal allocation.
Mdpop: Faithful distributed implementation of efficient social choice problems
 In AAMAS’06  Autonomous Agents and Multiagent Systems
, 2006
"... In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem ..."
Abstract

Cited by 48 (17 self)
 Add to MetaCart
(Show Context)
In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem as a distributed constraint optimization problem (DCOP), in which each agent can communicate with other agents that share an interest in one or more variables. Whereas existing DCOP algorithms can be easily manipulated by an agent, either by misreporting private information or deviating from the algorithm, we introduce MDPOP, the first DCOP algorithm that provides a faithful distributed implementation for efficient social choice. This provides a concrete example of how the methods of mechanism design can be unified with those of distributed optimization. Faithfulness ensures that no agent can benefit by unilaterally deviating from any aspect of the protocol, neither informationrevelation, computation, nor communication, and whatever the private information of other agents. We allow for payments by agents to a central bank, which is the only central authority that we require. To achieve faithfulness, we carefully integrate the VickreyClarkeGroves (VCG) mechanism with the DPOP algorithm, such that each agent is only asked to perform computation, report
Computational Criticisms of the Revelation Principle
, 2003
"... The revelation principle is a cornerstone tool in mechanism design. It states that one can restrict attention, without loss in the designer's objective, to mechanisms in which A) the agents report their types completely in a single step up front, and B) the agents are motivated to be truthful. ..."
Abstract

Cited by 46 (12 self)
 Add to MetaCart
(Show Context)
The revelation principle is a cornerstone tool in mechanism design. It states that one can restrict attention, without loss in the designer's objective, to mechanisms in which A) the agents report their types completely in a single step up front, and B) the agents are motivated to be truthful. We show that reasonable constraints on computation and communication can invalidate the revelation principle. Regarding A, we show that by moving to multistep mechanisms, one can reduce exponential communication and computation to linearthereby answering a recognized important open question in mechanism design. Regarding B, we criticize the focus on truthful mechanismsa dogma that has, to our knowledge, never been criticized before. First, we study settings where the optimal truthful mechanism is complete to execute for the center. In that setting we show that by moving to insincere mechanisms, one can shift the burden of having to solve the complete problem from the center to one of the agents. Second, we study a new oracle model that captures the setting where utility values can be hard to compute even when all the pertinent information is availablea situation that occurs in many practical applications. In this model we show that by moving to insincere mechanisms, one can shift the burden of having to ask the oracle an exponential number of costly queries from the center to one of the agents. In both cases the insincere mechanism is equally good as the optimal truthful mechanism in the presence of unlimited computation. More interestingly, whereas being unable to carry out either difficult task would have hurt the center in achieving his objective in the truthful setting, if the agent is unable to carry out either difficult task, the value of the center's objec...