Results 1  10
of
302
Improved Boosting Algorithms Using Confidencerated Predictions
 MACHINE LEARNING
, 1999
"... We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find impr ..."
Abstract

Cited by 698 (26 self)
 Add to MetaCart
We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the multilabel case in which each example may belong to more than one class. We give two boosting methods for this problem, plus a third method based on output coding. One of these leads to a new method for handling the singlelabel case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we give some experimental results comparing a few of the algorithms discussed in this paper.
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different WWW search strategies, each of which is a query expansion for a given domain. For this task, we compare the performance of RankBoost to the individual search strategies. The second experiment is a collaborativefiltering task for making movie recommendations. Here, we present results comparing RankBoost to nearestneighbor and regression algorithms.
Image Indexing Using Color Correlograms
, 1997
"... We define a new image feature called the color correlogram and use it for image indexing and comparison. This feature distills the spatial correlation of colors, and is both effective and inexpensive for contentbased image retrieval. The correlogramrobustly tolerates large changesin appearance and ..."
Abstract

Cited by 329 (5 self)
 Add to MetaCart
We define a new image feature called the color correlogram and use it for image indexing and comparison. This feature distills the spatial correlation of colors, and is both effective and inexpensive for contentbased image retrieval. The correlogramrobustly tolerates large changesin appearance and shape caused by changes in viewing positions, camera zooms, etc. Experimental evidence suggests that this new feature outperforms not only the traditional color histogram method but also the recently proposed histogram refinement methods for image indexing/retrieval.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 309 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 249 (12 self)
 Add to MetaCart
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
On the mathematical foundations of learning
 Bulletin of the American Mathematical Society
, 2002
"... The problem of learning is arguably at the very core of the problem of intelligence, both biological and arti cial. T. Poggio and C.R. Shelton ..."
Abstract

Cited by 223 (12 self)
 Add to MetaCart
The problem of learning is arguably at the very core of the problem of intelligence, both biological and arti cial. T. Poggio and C.R. Shelton
Scalesensitive Dimensions, Uniform Convergence, and Learnability
, 1997
"... Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distributionfree convergence property of means to expectations uniformly over classes of random variables. Classes of realvalued functions enjoy ..."
Abstract

Cited by 208 (1 self)
 Add to MetaCart
Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distributionfree convergence property of means to expectations uniformly over classes of random variables. Classes of realvalued functions enjoying such a property are also known as uniform GlivenkoCantelli classes. In this paper we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform GlivenkoCantelli classes. Our characterization yields Dudley, Gin'e, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the VapnikChervonenkis dimension. We apply this result to obtain the weakest combinatorial condition known to imply PAC learnability in the statistical regression (or "agnostic") framework. Furthermore, we show a characterization of learnability in the probabilistic concept model, solving an open problem posed by Kearns and Schapire. These results show that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.
Toward efficient agnostic learning
 In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, 1992
"... Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtua ..."
Abstract

Cited by 195 (7 self)
 Add to MetaCart
Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtually no assumptions on the target function. The name derives from the fact that as designers of learning algorithms, we give up the belief that Nature (as represented by the target function) has a simple or succinct explanation. We give a number of positive and negative results that provide an initial outline of the possibilities for agnostic learning. Our results include hardness results for the most obvious generalization of the PAC model to an agnostic setting, an efficient and general agnostic learning method based on dynamic programming, relationships between loss functions for agnostic learning, and an algorithm for a learning problem that involves hidden variables.
The Sample Complexity of Pattern Classification With Neural Networks: The Size of the Weights is More Important Than the Size of the Network
, 1997
"... Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the ne ..."
Abstract

Cited by 177 (15 self)
 Add to MetaCart
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a twolayer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A³ p (log n)=m (ignori...
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 172 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...