Results 1 
3 of
3
Reichenbach's Common Cause Principle and Quantum Field Theory
, 1997
"... Reichenbach's principle of a probabilistic common cause of probabilistic correlations is formulated in terms of relativistic quantum field theory and the problem is raised whether correlations in relativistic quantum field theory between events represented by projections in local observable algebras ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
Reichenbach's principle of a probabilistic common cause of probabilistic correlations is formulated in terms of relativistic quantum field theory and the problem is raised whether correlations in relativistic quantum field theory between events represented by projections in local observable algebras A(V1) and A(V2) pertaining to spacelike separated spacetime regions V1 and V2 can be explained by finding a probabilistic common cause of the correlation in Reichenbach's sense. While this problem remains open, it is shown that if all superluminal correlations predicted by the vacuum state between events in A(V1) and A(V2) have a genuinely probabilistic common cause, then the local algebras A(V1) and A(V2) must be statistically independent in the sense of C*independence.
Stochastic Einstein Locality Revisited
, 2007
"... I discuss various formulations of stochastic Einstein locality (SEL), which is a version of the idea of relativistic causality, i.e. the idea that influences propagate at most as fast as light. SEL is similar to Reichenbach’s Principle of the Common Cause (PCC), and Bell’s Local Causality. My main a ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
I discuss various formulations of stochastic Einstein locality (SEL), which is a version of the idea of relativistic causality, i.e. the idea that influences propagate at most as fast as light. SEL is similar to Reichenbach’s Principle of the Common Cause (PCC), and Bell’s Local Causality. My main aim is to discuss formulations of SEL for a fixed background spacetime. I previously argued that SEL is violated by the outcome dependence shown by Bell correlations, both in quantum mechanics and in quantum field theory. Here I reassess those verdicts in the light of some recent literature which argues that outcome dependence does not violate the PCC. I argue that the verdicts about SEL still stand. Finally, I briefly discuss how to formulate relativistic causality if there is no
Quantum mechanics is about quantum information. Forthcoming
 in Foundations of Physics. quantph/0408020
"... I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s spec ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right. 1