Results 1  10
of
79
The Bayes Net Toolbox for MATLAB
 Computing Science and Statistics
, 2001
"... The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the ..."
Abstract

Cited by 243 (1 self)
 Add to MetaCart
The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the web page has received over 28,000 hits since May 2000. In this paper, we discuss a broad spectrum of issues related to graphical models (directed and undirected), and describe, at a highlevel, how BNT was designed to cope with them all. We also compare BNT to other software packages for graphical models, and to the nascent OpenBayes effort.
Learning with mixtures of trees
 Journal of Machine Learning Research
, 2000
"... This paper describes the mixturesoftrees model, a probabilistic model for discrete multidimensional domains. Mixturesoftrees generalize the probabilistic trees of Chow and Liu [6] in a different and complementary direction to that of Bayesian networks. We present efficient algorithms for learnin ..."
Abstract

Cited by 141 (2 self)
 Add to MetaCart
(Show Context)
This paper describes the mixturesoftrees model, a probabilistic model for discrete multidimensional domains. Mixturesoftrees generalize the probabilistic trees of Chow and Liu [6] in a different and complementary direction to that of Bayesian networks. We present efficient algorithms for learning mixturesoftrees models in maximum likelihood and Bayesian frameworks. We also discuss additional efficiencies that can be obtained when data are “sparse, ” and we present data structures and algorithms that exploit such sparseness. Experimental results demonstrate the performance of the model for both density estimation and classification. We also discuss the sense in which treebased classifiers perform an implicit form of feature selection, and demonstrate a resulting insensitivity to irrelevant attributes.
Learning Bayesian Networks from Data: An InformationTheory Based Approach
, 2001
"... This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional indepe ..."
Abstract

Cited by 126 (4 self)
 Add to MetaCart
This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
Comparing Bayesian Network Classifiers
, 1999
"... In this paper, we empirically evaluate algorithms for learning four types of Bayesian network (BN) classifiers  NaïveBayes, tree augmented NaïveBayes, BN augmented NaïveBayes and general BNs, where the latter two are learned using two variants of a conditionalindependence (CI) based BNlearnin ..."
Abstract

Cited by 106 (5 self)
 Add to MetaCart
(Show Context)
In this paper, we empirically evaluate algorithms for learning four types of Bayesian network (BN) classifiers  NaïveBayes, tree augmented NaïveBayes, BN augmented NaïveBayes and general BNs, where the latter two are learned using two variants of a conditionalindependence (CI) based BNlearning algorithm. Experimental results show the obtained classifiers, learned using the CI based algorithms, are competitive with (or superior to) the best known classifiers, based on both Bayesian networks and other formalisms; and that the computational time for learning and using these classifiers is relatively small. Moreover, these results also suggest a way to learn yet more effective classifiers; we demonstrate empirically that this new algorithm does work as expected. Collectively, these results argue that BN classifiers deserve more attention in machine learning and data mining communities. 1 INTRODUCTION Many tasks  including fault diagnosis, pattern recognition and forecasting  c...
Learning Bayesian Belief Network Classifiers: Algorithms and System
 Proceedings of 14 th Biennial conference of the
, 2001
"... This paper investigates the methods for learning predictive classifiers based on Bayesian belief networks (BN)  primarily unrestricted Bayesian networks and Bayesian multinets. We present our algorithms for learning these classifiers, and discuss how these methods address the overfitting proble ..."
Abstract

Cited by 70 (3 self)
 Add to MetaCart
(Show Context)
This paper investigates the methods for learning predictive classifiers based on Bayesian belief networks (BN)  primarily unrestricted Bayesian networks and Bayesian multinets. We present our algorithms for learning these classifiers, and discuss how these methods address the overfitting problem and provide a natural method for feature subset selection. Using a set of standard classification problems, we empirically evaluate the performance of various BNbased classifiers. The results show that the proposed BN and Bayes multinet classifiers are competitive with (or superior to) the best known classifiers, based on both BN and other formalisms; and that the computational time for learning and using these classifiers is relatively small. These results argue that BN based classifiers deserve more attention in the data mining community. 1 In t roduct i on Many tasks  including fault diagnosis, pattern recognition and forecasting  can be viewed as classification, as each r...
An Algorithm for Bayesian Belief Network Construction from Data
 IN PROCEEDINGS OF AI & STAT’97
, 1997
"... This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier in the order) as input and constructs a belief network structure as output ..."
Abstract

Cited by 55 (5 self)
 Add to MetaCart
(Show Context)
This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier in the order) as input and constructs a belief network structure as output. The construction process is based on the computation of mutual information of attribute pairs. Given a data set which is large enough and has a DAGIsomorphic probability distribution, this algorithm guarantees that the perfect map [1] of the underlying dependency model is generated, and at the same time, enjoys the time complexity of O N ( ) on conditional independence (CI) tests. To evaluate this algorithm, we present the experimental results on three versions of the wellknown ALARM network database, which has 37 attributes and 10,000 records. The correctness proof and the analysis of computational complexity are also presented. We also discuss the features of our work and relate it to previous works.
Learning Bayesian Networks from Data: An Efficient Approach Based on Information Theory
, 1997
"... This paper addresses the problem of learning Bayesian network structures from data by using an information theoretic dependency analysis approach. Based on our threephase construction mechanism, two efficient algorithms have been developed. One of our algorithms deals with a special case where the ..."
Abstract

Cited by 49 (0 self)
 Add to MetaCart
This paper addresses the problem of learning Bayesian network structures from data by using an information theoretic dependency analysis approach. Based on our threephase construction mechanism, two efficient algorithms have been developed. One of our algorithms deals with a special case where the node ordering is given, the algorithm only require ) ( 2 N O CI tests and is correct given that the underlying model is DAGFaithful [Spirtes et. al., 1996]. The other algorithm deals with the general case and requires ) ( 4 N O conditional independence (CI) tests. It is correct given that the underlying model is monotone DAGFaithful (see Section 4.4). A system based on these algorithms has been developed and distributed through the Internet. The empirical results show that our approach is efficient and reliable. 1 Introduction The Bayesian network is a powerful knowledge representation and reasoning tool under conditions of uncertainty. A Bayesian network is a directed acyclic graph ...
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design
, 2002
"... Motivation: In drug discovery a key task is to identify characteristics that separate active (binding) compounds from inactive (nonbinding) ones. An automated prediction system can help reduce resources necessary to carry out this task. Results: Two methods for prediction of molecular bioactivity f ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
Motivation: In drug discovery a key task is to identify characteristics that separate active (binding) compounds from inactive (nonbinding) ones. An automated prediction system can help reduce resources necessary to carry out this task. Results: Two methods for prediction of molecular bioactivity for drug design are introduced and shown to perform well in a dataset previously studied as part of the KDD (Knowledge Discovery and Data Mining) Cup 2001. The data is characterized by very few positive examples, a very large number of features (describing threedimensional properties of the molecules) and rather different distributions between training and test data. Two techniques are introduced specifically to tackle these problems: a feature selection method for unbalanced data and a classifier which adapts to the distribution of the the unlabeled test data (a socalled transductive method). We show both techniques improve identification performance and in conjunction provide an improvement over using only one of the techniques. Our results suggest the importance of taking into account the characteristics in this data which may also be relevant in other problems of a similar type. Availability: Matlab source code is available at
Software reliability engineering: A roadmap
 In
"... participated in more than 30 industrial projects, published over 250 papers, and helped to develop many commercial systems and software tools. Professor Lyu is frequently invited as a keynote or tutorial speaker to conferences and workshops in U.S., Europe, and ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
(Show Context)
participated in more than 30 industrial projects, published over 250 papers, and helped to develop many commercial systems and software tools. Professor Lyu is frequently invited as a keynote or tutorial speaker to conferences and workshops in U.S., Europe, and
B.: GORDIAN: efficient and scalable discovery of composite keys
 In: VLDB (2006
"... ..."
(Show Context)