Results 1  10
of
57
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 224 (14 self)
 Add to MetaCart
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
Matrices, vector spaces, and information retrieval
 SIAM Review
, 1999
"... Abstract. The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no short ..."
Abstract

Cited by 112 (1 self)
 Add to MetaCart
Abstract. The evolution of digital libraries and the Internet has dramatically transformed the processing, storage, and retrieval of information. Efforts to digitize text, images, video, and audio now consume a substantial portion of both academic and industrial activity. Even when there is no shortage of textual materials on a particular topic, procedures for indexing or extracting the knowledge or conceptual information contained in them can be lacking. Recently developed information retrieval technologies are based on the concept of a vector space. Data are modeled as a matrix, and a user’s query of the database is represented as a vector. Relevant documents in the database are then identified via simple vector operations. Orthogonal factorizations of the matrix provide mechanisms for handling uncertainty in the database itself. The purpose of this paper is to show how such fundamental mathematical concepts from linear algebra can be used to manage and index large text collections. Key words. information retrieval, linear algebra, QR factorization, singular value decomposition, vector spaces
A Framework for Robust Subspace Learning
 International Journal of Computer Vision
, 2003
"... Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multilinear models. These models have been widely used for the representation of shape, appearance, motion, etc, in computer vision applications. ..."
Abstract

Cited by 100 (6 self)
 Add to MetaCart
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multilinear models. These models have been widely used for the representation of shape, appearance, motion, etc, in computer vision applications.
On the Early History of the Singular Value Decomposition
, 1992
"... This paper surveys the contributions of five mathematicians  Eugenio Beltrami (18351899), Camille Jordan (18381921), James Joseph Sylvester (18141897), Erhard Schmidt (18761959), and Hermann Weyl (18851955)  who were responsible for establishing the existence of the singular value de ..."
Abstract

Cited by 84 (1 self)
 Add to MetaCart
This paper surveys the contributions of five mathematicians  Eugenio Beltrami (18351899), Camille Jordan (18381921), James Joseph Sylvester (18141897), Erhard Schmidt (18761959), and Hermann Weyl (18851955)  who were responsible for establishing the existence of the singular value decomposition and developing its theory.
FINDING STRUCTURE WITH RANDOMNESS: PROBABILISTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS
"... Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for ..."
Abstract

Cited by 47 (1 self)
 Add to MetaCart
Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing lowrank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired lowrank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition
Admira: Atomic decomposition for minimum rank approximation
, 905
"... We address the inverse problem that arises in compressed sensing of a lowrank matrix. Our approach is to pose the inverse problem as an approximation problem with a specified target rank of the solution. A simple search over the target rank then provides the minimum rank solution satisfying a presc ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
We address the inverse problem that arises in compressed sensing of a lowrank matrix. Our approach is to pose the inverse problem as an approximation problem with a specified target rank of the solution. A simple search over the target rank then provides the minimum rank solution satisfying a prescribed data approximation bound. We propose an atomic decomposition that provides an analogy between parsimonious representations of a sparse vector and a lowrank matrix. Efficient greedy algorithms to solve the inverse problem for the vector case are extended to the matrix case through this atomic decomposition. In particular, we propose an efficient and guaranteed algorithm named ADMiRA that extends CoSaMP, its analogue for the vector case. The performance guarantee is given in terms of the rankrestricted isometry property and bounds both the number of iterations and the error in the approximate solution for the general case where the solution is approximately lowrank and the measurements are noisy. With a sparse measurement operator such as the one arising in the matrix completion problem, the computation in ADMiRA is linear in the number of measurements. The numerical experiments for the matrix completion problem show that, although the measurement operator in this case does not satisfy the rankrestricted isometry property, ADMiRA is a competitive algorithm for matrix completion.
Matrix nearness problems and applications
 Applications of Matrix Theory
, 1989
"... A matrix nearness problem consists of finding, for an arbitrary matrix A, a nearest member of some given class of matrices, where distance is measured in a matrix norm. A survey of nearness problems is given, with particular emphasis on the fundamental properties of symmetry, positive definiteness, ..."
Abstract

Cited by 33 (6 self)
 Add to MetaCart
A matrix nearness problem consists of finding, for an arbitrary matrix A, a nearest member of some given class of matrices, where distance is measured in a matrix norm. A survey of nearness problems is given, with particular emphasis on the fundamental properties of symmetry, positive definiteness, orthogonality, normality, rankdeficiency and instability. Theoretical results and computational methods are described. Applications of nearness problems in areas including control theory, numerical analysis and statistics are outlined.
FINDING STRUCTURE WITH RANDOMNESS: STOCHASTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS
, 2009
"... Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys recent research which demonstrates that randomization offers a powerful tool for performing l ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys recent research which demonstrates that randomization offers a powerful tool for performing lowrank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. In particular, these techniques offer a route toward principal component analysis (PCA) for petascale data. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired lowrank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider
A rankrevealing method with updating, downdating and applications
 SIAM J. Matrix Anal. Appl
"... Abstract. A new rank revealing method is proposed. For a given matrix and a threshold for nearzero singular values, by employing a globally convergent iterative scheme as well as a deflation technique the method calculates approximate singular values below the threshold one by one and returns the a ..."
Abstract

Cited by 23 (7 self)
 Add to MetaCart
Abstract. A new rank revealing method is proposed. For a given matrix and a threshold for nearzero singular values, by employing a globally convergent iterative scheme as well as a deflation technique the method calculates approximate singular values below the threshold one by one and returns the approximate rank of the matrix along with an orthonormal basis for the approximate null space. When a row or column is inserted or deleted, algorithms for updating/downdating the approximate rank and null space are straightforward, stable and efficient. Numerical results exhibiting the advantages of our code over existing packages based on twosided orthogonal rankrevealing decompositions are presented. Also presented are applications of the new algorithm in numerical computation of the polynomial GCD as well as identification of nonisolated zeros of polynomial systems.
Collinearity and Least Squares Regression
 Statistical Science
, 1987
"... this paper we introduce certain numbers, called collinearity indices, which are useful in detecting near collinearities in regression problems. The coefficients enter adversely into formulas concerning significance testing and the effects of errors in the regression variables. Thus they provide simp ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
this paper we introduce certain numbers, called collinearity indices, which are useful in detecting near collinearities in regression problems. The coefficients enter adversely into formulas concerning significance testing and the effects of errors in the regression variables. Thus they provide simple regression diagnostics, suitable for incorporation in regression packages. Keywords and phrases: collinearity, illconditioning, linear regression, errors in the variables, regression diagnostics. 1 Introduction