Results 1 
4 of
4
The HOL Light manual (1.1)
, 2000
"... ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's A ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's ASCII concrete syntax the backslash is used, e.g. \x. t.) For example, x: x + 1 is the function that adds one to its argument. Abstractions are not often seen in informal mathematics, but they have at least two merits. First, they allow one to write anonymous functionvalued expressions without naming them (occasionally one sees x 7! t[x] used for this purpose), and since our logic is avowedly higher order, it's desirable to place functions on an equal footing with rstorder objects in this way. Secondly, they make variable dependencies and binding explicit; by contrast in informal mathematics one often writes f(x) in situations where one really means x: f(x). We should give some idea of how ordina...
The HOL Light manual (1.0)
, 1998
"... ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's A ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's ASCII concrete syntax the backslash is used, e.g. "x. t.) For example, x: x + 1 is the function that adds one to its argument. Abstractions are not often seen in informal mathematics, but they have at least two merits. First, they allow one to write anonymous functionvalued expressions without naming them (occasionally one sees x 7! t[x] used for this purpose), and since our logic is avowedly higher order, it's desirable to place functions on an equal footing with firstorder objects in this way. Secondly, they make variable dependencies and binding explicit; by contrast in informal mathematics one often writes f(x) in situations where one really means x: f(x). We should give some idea of how ordinary...
and
, 2014
"... Effective support for custom proof automation is essential for largescale interactive proof development. However, existing languages for automation via tactics either (a) provide no way to specify the behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on adva ..."
Abstract
 Add to MetaCart
Effective support for custom proof automation is essential for largescale interactive proof development. However, existing languages for automation via tactics either (a) provide no way to specify the behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on advanced typetheoretic machinery that is not easily integrated into established theorem provers. We present Mtac, a lightweight but powerful extension to Coq that supports dependentlytyped tactic programming. Mtac tactics have access to all the features of ordinary Coq programming, as well as a new set of typed tactical primitives. We avoid the need to touch the trusted kernel typechecker of Coq by encapsulating uses of these new tactical primitives in a monad, and instrumenting Coq so that it executes monadic tactics during type inference. 1
Mode checking in the Concurrent Logical Framework
, 2014
"... We define and prove correct a mode checker for a significant fragment of the concurrent logical framework CLF. ∗ This paper was made possible by grant 0911071168, Formal Reasoning about Languages for Distributed ..."
Abstract
 Add to MetaCart
We define and prove correct a mode checker for a significant fragment of the concurrent logical framework CLF. ∗ This paper was made possible by grant 0911071168, Formal Reasoning about Languages for Distributed