Results 1  10
of
100
Multilanguage Hierarchical Logics (or: How We Can Do Without Modal Logics)
, 1994
"... MultiLanguage systems (ML systems) are formal systems allowing the use of multiple distinct logical languages. In this paper we introduce a class of ML systems which use a hierarchy of first order languages, each language containing names for the language below, and propose them as an alternative to ..."
Abstract

Cited by 178 (47 self)
 Add to MetaCart
MultiLanguage systems (ML systems) are formal systems allowing the use of multiple distinct logical languages. In this paper we introduce a class of ML systems which use a hierarchy of first order languages, each language containing names for the language below, and propose them as an alternative to modal logics. The motivations of our proposal are technical, epistemological and implementational. From a technical point of view, we prove, among other things, that the set of theorems of the most common modal logics can be embedded (under the obvious bijective mapping between a modal and a first order language) into that of the corresponding ML systems. Moreover, we show that ML systems have properties not holding for modal logics and argue that these properties are justified by our intuitions. This claim is motivated by the study of how ML systems can be used in the representation of beliefs (more generally, propositional attitudes) and provability, two areas where modal logics have been extensively used. Finally, from an implementation point of view, we argue that ML systems resemble closely the current practice in the computer representation of propositional attitudes and metatheoretic theorem proving.
Tableau Methods for Modal and Temporal Logics
, 1995
"... This document is a complete draft of a chapter by Rajeev Gor'e on "Tableau Methods for Modal and Temporal Logics" which is part of the "Handbook of Tableau Methods", edited by M. D'Agostino, D. Gabbay, R. Hahnle and J. Posegga, to be published in 1998 by Kluwer, Dordrecht. Any comments and correctio ..."
Abstract

Cited by 125 (20 self)
 Add to MetaCart
This document is a complete draft of a chapter by Rajeev Gor'e on "Tableau Methods for Modal and Temporal Logics" which is part of the "Handbook of Tableau Methods", edited by M. D'Agostino, D. Gabbay, R. Hahnle and J. Posegga, to be published in 1998 by Kluwer, Dordrecht. Any comments and corrections are highly welcome. Please email me at rpg@arp.anu.edu.au The latest version of this document can be obtained via my WWW home page: http://arp.anu.edu.au/ Tableau Methods for Modal and Temporal Logics Rajeev Gor'e Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Syntax and Notational Conventions . . . . . . . . . . . . 3 2.2 Axiomatics of Modal Logics . . . . . . . . . . . . . . . . 4 2.3 Kripke Semantics For Modal Logics . . . . . . . . . . . . 5 2.4 Known Correspondence and Completeness Results . . . . 6 2.5 Logical Consequence . . . . . . . . . . . . . . . . . . . . 8 2....
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 102 (0 self)
 Add to MetaCart
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
An Overview of Temporal and Modal Logic Programming
 Proc. First Int. Conf. on Temporal Logic  LNAI 827
, 1994
"... . This paper presents an overview of the development of the field of temporal and modal logic programming. We review temporal and modal logic programming languages under three headings: (1) languages based on interval logic, (2) languages based on temporal logic, and (3) languages based on (multi)mo ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
. This paper presents an overview of the development of the field of temporal and modal logic programming. We review temporal and modal logic programming languages under three headings: (1) languages based on interval logic, (2) languages based on temporal logic, and (3) languages based on (multi)modal logics. The overview includes most of the major results developed, and points out some of the similarities, and the differences, between languages and systems based on diverse temporal and modal logics. The paper concludes with a brief summary and discussion. Categories: Temporal and Modal Logic Programming. 1 Introduction In logic programming, a program is a set of Horn clauses representing our knowledge and assumptions about some problem. The semantics of logic programs as developed by van Emden and Kowalski [96] is based on the notion of the least (minimum) Herbrand model and its fixedpoint characterization. As logic programming has been applied to a growing number of problem domai...
Logics of Formal Inconsistency
 Handbook of Philosophical Logic
"... 1.1 Contradictoriness and inconsistency, consistency and noncontradictoriness In traditional logic, contradictoriness (the presence of contradictions in a theory or in a body of knowledge) and triviality (the fact that such a theory ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
1.1 Contradictoriness and inconsistency, consistency and noncontradictoriness In traditional logic, contradictoriness (the presence of contradictions in a theory or in a body of knowledge) and triviality (the fact that such a theory
Kleene Algebra with Domain
, 2003
"... We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressibility of Kleene algebra, in particular for the specification and analysis of state transition systems. We ..."
Abstract

Cited by 42 (29 self)
 Add to MetaCart
We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressibility of Kleene algebra, in particular for the specification and analysis of state transition systems. We develop the basic calculus, discuss some related theories and present the most important models of KAD. We demonstrate applicability by two examples: First, an algebraic reconstruction of Noethericity and wellfoundedness. Second, an algebraic reconstruction of propositional Hoare logic.
Products of Modal Logics, Part 1
 LOGIC JOURNAL OF THE IGPL
, 1998
"... The paper studies manydimensional modal logics corresponding to products of Kripke frames. It proves results on axiomatisability, the finite model property and decidability for product logics, by applying a rather elaborated modal logic technique: pmorphisms, the finite depth method, normal forms, ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
The paper studies manydimensional modal logics corresponding to products of Kripke frames. It proves results on axiomatisability, the finite model property and decidability for product logics, by applying a rather elaborated modal logic technique: pmorphisms, the finite depth method, normal forms, filtrations. Applications to first order predicate logics are considered too. The introduction and the conclusion contain a discussion of many related results and open problems in the area.
MultiDimensional Modal Logic as a Framework for SpatioTemporal Reasoning
 APPLIED INTELLIGENCE
, 2000
"... In this paper we advocate the use of multidimensional modal logics as a framework for knowledge representation and, in particular, for representing spatiotemporal information. We construct a twodimensional logic capable of describing topological relationships that change over time. This logic, ca ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
In this paper we advocate the use of multidimensional modal logics as a framework for knowledge representation and, in particular, for representing spatiotemporal information. We construct a twodimensional logic capable of describing topological relationships that change over time. This logic, called PSTL (Propositional SpatioTemporal Logic) is the Cartesian product of the wellknown temporal logic PTL and the modal logic S4u , which is the Lewis system S4 augmented with the universal modality. Although it is an open problem whether the full PSTL is decidable, we show that it contains decidable fragments into which various temporal extensions (both pointbased and interval based) of the spatial logic RCC8 can be embedded. We consider known decidability and complexity results that are relevant to computation with mulidimensional formalisms and discuss possible directions for further research.
Ontologies for Plane, Polygonal Mereotopology
, 1997
"... Several authors have suggested that a more parsimonious and conceptually elegant treatment of everyday mereological and topological reasoning can be obtained by adopting a spatial ontology in which regions, not points, are the primitive entities. This paper challenges this suggestion for mereotop ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
Several authors have suggested that a more parsimonious and conceptually elegant treatment of everyday mereological and topological reasoning can be obtained by adopting a spatial ontology in which regions, not points, are the primitive entities. This paper challenges this suggestion for mereotopological reasoning in 2dimensional space. Our strategy is to define a mereotopological language together with a familiar, pointbased interpretation. It is proposed that, to be practically useful, any alternative regionbased spatial ontology must support the same sentences in our language as this familiar interpretation. This proposal has the merit of transforming a vague, openended question about ontologies for "practical" mereotopological reasoning into a precise question in model theory. We show that (a version of) the familiar interpretation is countable and atomic, and therefore prime. We conclude that useful alternative ontologies of the plane are, if anything, less parsimonious than the one which they are supposed to replace.
Combining Temporal Logic Systems
 Notre Dame Journal of Formal Logic
, 1994
"... This paper is a continuation of the work started in [FG92] on combining temporal logics. In this work, four combination methods are described and studied with respect to the transference of logical properties from the component onedimensional temporal logics to the resulting twodimensional tempora ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
This paper is a continuation of the work started in [FG92] on combining temporal logics. In this work, four combination methods are described and studied with respect to the transference of logical properties from the component onedimensional temporal logics to the resulting twodimensional temporal logic. Three basic logical properties are analysed, namely soundness, completeness and decidability. Each combination method is composed of three submethods that combine the languages, the inference systems and the semantics of two onedimensional temporal logic systems, generating families of twodimensional temporal languages with varying expressivity and varying degree of transference of logical properties. The temporalisation method and the independent combination method are shown to transfer all three basic logical properties. The method of full interlacing of logic systems generates a considerably more expressive language but fails to transfer completeness and decidability in several...