Results 1  10
of
191
QMR: a QuasiMinimal Residual Method for NonHermitian Linear Systems
, 1991
"... ... In this paper, we present a novel BCGlike approach, the quasiminimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a lookahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from t ..."
Abstract

Cited by 354 (26 self)
 Add to MetaCart
... In this paper, we present a novel BCGlike approach, the quasiminimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a lookahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported.
Numerical solution of saddle point problems
 ACTA NUMERICA
, 2005
"... Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has b ..."
Abstract

Cited by 199 (28 self)
 Add to MetaCart
(Show Context)
Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for solving this type of systems. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.
Preconditioning techniques for large linear systems: A survey
 J. COMPUT. PHYS
, 2002
"... This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization i ..."
Abstract

Cited by 118 (5 self)
 Add to MetaCart
(Show Context)
This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization issues, and block and multilevel extensions. Some of the challenges ahead are also discussed. An extensive bibliography completes the paper.
Iterative Solution of Linear Systems
 Acta Numerica
, 1992
"... this paper is as follows. In Section 2, we present some background material on general Krylov subspace methods, of which CGtype algorithms are a special case. We recall the outstanding properties of CG and discuss the issue of optimal extensions of CG to nonHermitian matrices. We also review GMRES ..."
Abstract

Cited by 108 (8 self)
 Add to MetaCart
this paper is as follows. In Section 2, we present some background material on general Krylov subspace methods, of which CGtype algorithms are a special case. We recall the outstanding properties of CG and discuss the issue of optimal extensions of CG to nonHermitian matrices. We also review GMRES and related methods, as well as CGlike algorithms for the special case of Hermitian indefinite linear systems. Finally, we briefly discuss the basic idea of preconditioning. In Section 3, we turn to Lanczosbased iterative methods for general nonHermitian linear systems. First, we consider the nonsymmetric Lanczos process, with particular emphasis on the possible breakdowns and potential instabilities in the classical algorithm. Then we describe recent advances in understanding these problems and overcoming them by using lookahead techniques. Moreover, we describe the quasiminimal residual algorithm (QMR) proposed by Freund and Nachtigal (1990), which uses the lookahead Lanczos process to obtain quasioptimal approximate solutions. Next, a survey of transposefree Lanczosbased methods is given. We conclude this section with comments on other related work and some historical remarks. In Section 4, we elaborate on CGNR and CGNE and we point out situations where these approaches are optimal. The general class of Krylov subspace methods also contains parameterdependent algorithms that, unlike CGtype schemes, require explicit information on the spectrum of the coefficient matrix. In Section 5, we discuss recent insights in obtaining appropriate spectral information for parameterdependent Krylov subspace methods. After that, 4 R.W. Freund, G.H. Golub and N.M. Nachtigal
A TwoDimensional Data Distribution Method For Parallel Sparse MatrixVector Multiplication
 SIAM REVIEW
"... A new method is presented for distributing data in sparse matrixvector multiplication. The method is twodimensional, tries to minimise the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipar ..."
Abstract

Cited by 72 (8 self)
 Add to MetaCart
(Show Context)
A new method is presented for distributing data in sparse matrixvector multiplication. The method is twodimensional, tries to minimise the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipartitioning of the sparse matrix, each time splitting a rectangular matrix into two parts with a nearly equal number of nonzeros. The communication volume caused by the split is minimised. After the matrix partitioning, the input and output vectors are partitioned with the objective of minimising the maximum communication volume per processor. Experimental results of our implementation, Mondriaan, for a set of sparse test matrices show a reduction in communication compared to onedimensional methods, and in general a good balance in the communication work.
An Implementation Of The Qmr Method Based On Coupled TwoTerm Recurrences
, 1992
"... . Recently, the authors have proposed a new Krylov subspace iteration, the quasiminimal residual algorithm (QMR), for solving nonHermitian linear systems. In the original implementation of the QMR method, the Lanczos process with lookahead is used to generate basis vectors for the underlying Kryl ..."
Abstract

Cited by 70 (14 self)
 Add to MetaCart
. Recently, the authors have proposed a new Krylov subspace iteration, the quasiminimal residual algorithm (QMR), for solving nonHermitian linear systems. In the original implementation of the QMR method, the Lanczos process with lookahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of threeterm recurrences. It has been observed that, in finite precision arithmetic, vector iterations based on threeterm recursions are usually less robust than mathematically equivalent coupled twoterm vector recurrences. This paper presents a lookahead algorithm that constructs the Lanczos basis vectors by means of coupled twoterm recursions. Implementation details are given, and the lookahead strategy is described. A new implementation of the QMR method, based on this coupled twoterm algorithm, is proposed. A simplified version of the QMR algorithm without lookahead is also presented, and the specia...
Krylov subspace methods on supercomputers
 SIAM J. SCI. STAT. COMPUT
, 1989
"... This paper presents a short survey of recent research on Krylov subspace methods with emphasis on implementation on vector and parallel computers. Conjugate gradient methods have proven very useful on traditional scalar computers, and their popularity is likely to increase as three dimensional model ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
(Show Context)
This paper presents a short survey of recent research on Krylov subspace methods with emphasis on implementation on vector and parallel computers. Conjugate gradient methods have proven very useful on traditional scalar computers, and their popularity is likely to increase as three dimensional models gain importance. A conservative approach to derive effective iterative techniques for supercomputers has been to find efficient parallel / vector implementations of the standard algorithms. The main source of difficulty in the incomplete factorization preconditionings is in the solution of the triangular systems at each step. We describe in detail a few approaches consisting of implementing efficient forward and backward triangular solutions. Then we discuss polynomial preconditioning as an alternative to standard incomplete factorization techniques. Another efficient approach is to reorder the equations so as improve the structure of the matrix to achieve better parallelism or vectorization. We give an overview of these ideas and others and attempt to comment on their effectiveness or potential for different types of architectures.
Preconditioning indefinite systems in interior point methods for optimization
 Computational Optimization and Applications
, 2004
"... Abstract. Every Newton step in an interiorpoint method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable il ..."
Abstract

Cited by 53 (14 self)
 Add to MetaCart
(Show Context)
Abstract. Every Newton step in an interiorpoint method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable illconditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Two types of preconditioners which use some form of incomplete Cholesky factorization for indefinite systems are proposed in this paper. Although they involve significantly sparser factorizations than those used in direct approaches they still capture most of the numerical properties of the preconditioned system. The spectral analysis of the preconditioned matrix is performed: for convex optimization problems all the eigenvalues of this matrix are strictly positive. Numerical results are given for a set of public domain large linearly constrained convex quadratic programming problems with sizes reaching tens of thousands of variables. The analysis of these results reveals that the solution times for such problems on a modern PC are measured in minutes when direct methods are used and drop to seconds when iterative methods with appropriate preconditioners are used. Keywords: interiorpoint methods, iterative solvers, preconditioners 1.
Recent computational developments in Krylov subspace methods for linear systems
 NUMER. LINEAR ALGEBRA APPL
, 2007
"... Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are metho ..."
Abstract

Cited by 51 (12 self)
 Add to MetaCart
Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are methods specifically tailored to systems with special properties such as special forms of symmetry and those depending on one or more parameters.
Lanczostype solvers for nonsymmetric linear systems of equations
 Acta Numer
, 1997
"... Among the iterative methods for solving large linear systems with a sparse (or, possibly, structured) nonsymmetric matrix, those that are based on the Lanczos process feature short recurrences for the generation of the Krylov space. This means low cost and low memory requirement. This review article ..."
Abstract

Cited by 37 (11 self)
 Add to MetaCart
(Show Context)
Among the iterative methods for solving large linear systems with a sparse (or, possibly, structured) nonsymmetric matrix, those that are based on the Lanczos process feature short recurrences for the generation of the Krylov space. This means low cost and low memory requirement. This review article introduces the reader not only to the basic forms of the Lanczos process and some of the related theory, but also describes in detail a number of solvers that are based on it, including those that are considered to be the most efficient ones. Possible breakdowns of the algorithms and ways to cure them by lookahead are also discussed. www.DownloadPaper.ir