Results 1 
3 of
3
A Categorical Programming Language
, 1987
"... A theory of data types and a programming language based on category theory are presented. Data types play a crucial role in programming. They enable us to write programs easily and elegantly. Various programming languages have been developed, each of which may use different kinds of data types. Ther ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
A theory of data types and a programming language based on category theory are presented. Data types play a crucial role in programming. They enable us to write programs easily and elegantly. Various programming languages have been developed, each of which may use different kinds of data types. Therefore, it becomes important to organize data types systematically so that we can understand the relationship between one data type and another and investigate future directions which lead us to discover exciting new data types. There have been several approaches to systematically organize data types: algebraic specification methods using algebras, domain theory using complete partially ordered sets and type theory using the connection between logics and data types. Here, we use category theory. Category theory has proved to be remarkably good at revealing the nature of mathematical objects, and we use it to understand the true nature of data types in programming.
A typed lambda calculus with categorical type constructors
 In Category Theory in Computer Science
, 1987
"... A typed lambda calculus with categorical type constructors is introduced. It has a uniform category theoretic mechanism to declare new types. Its type structure includes categorical objects like products and coproducts as well as recursive types like natural numbers and lists. It also allows duals o ..."
Abstract

Cited by 46 (0 self)
 Add to MetaCart
A typed lambda calculus with categorical type constructors is introduced. It has a uniform category theoretic mechanism to declare new types. Its type structure includes categorical objects like products and coproducts as well as recursive types like natural numbers and lists. It also allows duals of recursive types, i.e. lazy types, like infinite lists. It has generalized iterators for recursive types and duals of iterators for lazy types. We will give reduction rules for this simply typed lambda calculus and show that they are strongly normalizing even though it has infinite things like infinite lists. 1