Results 1  10
of
150
Probabilistic Approximation of Metric Spaces and its Algorithmic Applications
 In 37th Annual Symposium on Foundations of Computer Science
, 1996
"... The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized ..."
Abstract

Cited by 323 (28 self)
 Add to MetaCart
The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized algorithms for optimization problems on metric spaces, by relating the randomized performance ratio for any metric space to the randomized performance ratio for a set of "simple" metric spaces. We define a notion of a set of metric spaces that probabilisticallyapproximates another metric space. We prove that any metric space can be probabilisticallyapproximated by hierarchically wellseparated trees (HST) with a polylogarithmic distortion. These metric spaces are "simple" as being: (1) tree metrics. (2) natural for applying a divideandconquer algorithmic approach. The technique presented is of particular interest in the context of online computation. A large number of online al...
On Approximating Arbitrary Metrics by Tree Metrics
 In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
, 1998
"... This paper is concerned with probabilistic approximation of metric spaces. In previous work we introduced the method of ecient approximation of metrics by more simple families of metrics in a probabilistic fashion. In particular we study probabilistic approximations of arbitrary metric spaces by \hi ..."
Abstract

Cited by 260 (13 self)
 Add to MetaCart
This paper is concerned with probabilistic approximation of metric spaces. In previous work we introduced the method of ecient approximation of metrics by more simple families of metrics in a probabilistic fashion. In particular we study probabilistic approximations of arbitrary metric spaces by \hierarchically wellseparated tree" metric spaces. This has proved as a useful technique for simplifying the solutions to various problems.
Competitive Paging Algorithms
, 1991
"... The paging problem is that of deciding which pages to keep in a memory of k ..."
Abstract

Cited by 164 (22 self)
 Add to MetaCart
The paging problem is that of deciding which pages to keep in a memory of k
On the Power of Randomization in Online Algorithms
 Algorithmica
, 1990
"... Against an adaptive adversary, we show that the power of randomization in online algorithms is severely limited! We prove the existence of an efficient "simulation" of randomized online algorithms by deterministic ones, which is best possible in general. The proof of the upper bound is existential. ..."
Abstract

Cited by 138 (5 self)
 Add to MetaCart
Against an adaptive adversary, we show that the power of randomization in online algorithms is severely limited! We prove the existence of an efficient "simulation" of randomized online algorithms by deterministic ones, which is best possible in general. The proof of the upper bound is existential. We deal with the issue of computing the efficient deterministic algorithm, and show that this is possible in very general cases. 1 Introduction and Overview of Results Beginning with the work of Sleator and Tarjan [17], there has recently been a development of what might be called a Theory of Online Algorithms. The particular algorithmic problems analyzed in the Sleator and Tarjan paper are "list searching" and "paging", both well studied problems. But the novelty of their paper lies in a new measure of performance, later to be called the "competitive ratio", for online algorithms. This new approach, called "competitive analysis" in Karlin, Manasse, Rudolph and Sleator [11], seems to have...
Competitive Paging With Locality of Reference
 Journal of Computer and System Sciences
, 1991
"... Abstract The SleatorTarjan competitive analysis of paging [Comm. of the ACM; 28:202 208, 1985] gives us the ability to make strong theoretical statements about the performance of paging algorithms without making probabilistic assumptions on the input. Nevertheless practitioners voice reservations ..."
Abstract

Cited by 121 (3 self)
 Add to MetaCart
Abstract The SleatorTarjan competitive analysis of paging [Comm. of the ACM; 28:202 208, 1985] gives us the ability to make strong theoretical statements about the performance of paging algorithms without making probabilistic assumptions on the input. Nevertheless practitioners voice reservations about the model, citing its inability to discern between LRU and FIFO (algorithms whose performances differ markedly in practice), and the fact that the theoretical competitiveness of LRU is much larger than observed in practice. In addition, we would like to address the following important question: given some knowledge of a program's reference pattern, can we use it to improve paging performance on that program?
Searching in The Plane
 INFORMATION AND COMPUTATION
, 1991
"... In this paper we initiate a new area of study dealing with the best way to search a possibly unbounded region for an object. The model for our search algorithms is that we must pay costs proportional to the distance of the next probe position relative to our current position. This model is meant to ..."
Abstract

Cited by 120 (0 self)
 Add to MetaCart
In this paper we initiate a new area of study dealing with the best way to search a possibly unbounded region for an object. The model for our search algorithms is that we must pay costs proportional to the distance of the next probe position relative to our current position. This model is meant to give a realistic cost measure for a robot moving in the plane. We also examine the effect of decreasing the amount of a priori information given to search problems. Problems of this type are very simple analogues of nontrivial problems on searching an unbounded region, processing digitized images, and robot navigation. We show that for some simple search problems, the relative information of knowing the general direction of the goal is much higher than knowing the distance to the goal.
A GraphTheoretic Game and its Application to the kServer Problem
 SIAM J. COMPUT
, 1995
"... This paper investigates a zerosum game played on a weighted connected graph G between two players, the tree player and the edge player. At each play, the tree player chooses a spanning tree T and the edge player chooses an edge e. The payoff to the edge player is cost(T; e), defined as follows: If ..."
Abstract

Cited by 119 (4 self)
 Add to MetaCart
This paper investigates a zerosum game played on a weighted connected graph G between two players, the tree player and the edge player. At each play, the tree player chooses a spanning tree T and the edge player chooses an edge e. The payoff to the edge player is cost(T; e), defined as follows: If e lies in the tree T then cost(T; e) = 0; if e does not lie in the tree then cost(T; e) = cycle(T; e)=w(e), where w(e) is the weight of edge e and cycle(T; e) is the weight of the unique cycle formed when edge e is added to the tree T. Our main result is that the value of the game on any nvertex graph is bounded above by exp(O( p log n log log n)). The game arises in connection with the kserver problem on a road network; i.e., a metric space that can be represented as a multigraph G in which each edge e represents a road of length w(e). We show that, if the value of the game on G is V al(G; w), then there is a randomized strategy that achieves a competitive ratio of k(1 + V al(G; w)) against any oblivious adversary. Thus, on any nvertex road network, there is a randomized algorithm for the kserver problem that is k exp(O( p log n log log n))competitive against oblivious adversaries. At the heart of our analysis of the game is an algorithm that, for any nvertex weighted, connected multigraph, constructs a spanning tree T such
BEYOND COMPETITIVE ANALYSIS
, 2000
"... The competitive analysis of online algorithms has been criticized as being too crude and unrealistic. We propose refinements of competitive analysis in two directions: The first restricts the power of the adversary by allowingonly certain input distributions, while the other allows for comparisons ..."
Abstract

Cited by 118 (3 self)
 Add to MetaCart
The competitive analysis of online algorithms has been criticized as being too crude and unrealistic. We propose refinements of competitive analysis in two directions: The first restricts the power of the adversary by allowingonly certain input distributions, while the other allows for comparisons between information regimes for online decisionmaking. We illustrate the first with an application to the paging problem; as a byproduct we characterize completely the work functions of this important special case of the kserver problem. We use the second refinement to explore the power of lookahead in server and task systems.
Competitive Algorithms for Distributed Data Management
 In Proceedings of the 24th Annual ACM Symposium on Theory of Computing
"... We deal with the competitive analysis of algorithms for managing data in a distributed environment. We deal with the file allocation problem ([DF], [ML]), where copies of a file may be be stored in the local storage of some subset of processors. Copies may be replicated and discarded over time so ..."
Abstract

Cited by 100 (8 self)
 Add to MetaCart
We deal with the competitive analysis of algorithms for managing data in a distributed environment. We deal with the file allocation problem ([DF], [ML]), where copies of a file may be be stored in the local storage of some subset of processors. Copies may be replicated and discarded over time so as to optimize communication costs, but multiple copies must be kept consistent and at least one copy must be stored somewhere in the network at all times. We deal with competitive algorithms for minimizing communication costs, over arbitrary sequences of reads and writes, and arbitrary network topologies. We define the constrained file allocation problem to be the solution of many individual file allocation problems simultaneously, subject to the constraints of local memory size. We give competitive algorithms for this problem on the uniform network topology. We then introduce distributed competitive algorithms for online data tracking (a generalization of mobile user tracking [AP1...
The Complexity of Mean Payoff Games on Graphs
 Theoretical Computer Science
, 1996
"... We study the complexity of finding the values and optimal strategies of mean payoff games on graphs, a family of perfect information games introduced by Ehrenfeucht and Mycielski and considered by Gurvich, Karzanov and Khachiyan. We describe a pseudopolynomial time algorithm for the solution of suc ..."
Abstract

Cited by 96 (3 self)
 Add to MetaCart
We study the complexity of finding the values and optimal strategies of mean payoff games on graphs, a family of perfect information games introduced by Ehrenfeucht and Mycielski and considered by Gurvich, Karzanov and Khachiyan. We describe a pseudopolynomial time algorithm for the solution of such games, the decision problem for which is in NP " coNP. Finally, we describe a polynomial reduction from mean payoff games to the simple stochastic games studied by Condon. These games are also known to be in NP " coNP, but no polynomial or pseudopolynomial time algorithm is known for them. 1 Introduction Let G = (V; E)be a finite directed graph in which each vertex has at least one edge going out of it. Let w : E ! f\GammaW; : : : ; 0; : : : ; Wg be a function that assigns an integral weight to each edge of G. Ehrenfeucht and Mycielski [EM79] studied the following infinite twoperson game played on such a graph. The game starts at a vertex a 0 2 V . The first player chooses an edge e...