Results 1  10
of
29
The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems
 In: Proc. of the 3 rd International Conference on Logical Foundations of Computer Science, LFCS'94, A. Nerode and Yu.V. Matiyasevich, eds., Springer LNCS
, 1994
"... We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normaliza ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. The Conservation Theorem for OERSs follows easily from the properties of the strategy. We develop a method for computing the length of a longest reduction starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for computing lengths of longest reductions in strongly persistent OERSs that does not require actual transformation of the input term. As a corollary, we have an algorithm for computing lengths of longest developments in OERSs. 1 Introduction A strategy is perpetual if, given a term t, it constructs an infinit...
Addendum to `New notions of reduction and nonsemantic proofs of βstrong normalization in typed λcalculi
, 1995
"... ..."
HigherOrder Families
 In International Conference on Rewriting Techniques and Applications '96, LNCS
, 1996
"... A redex family is a set of redexes which are `created in the same way'. Families specify which redexes should be shared in any socalled optimal implementation of a rewriting system. We formalise the notion of family for orthogonal higherorder term rewriting systems (OHRSs). In order to comfort our ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
A redex family is a set of redexes which are `created in the same way'. Families specify which redexes should be shared in any socalled optimal implementation of a rewriting system. We formalise the notion of family for orthogonal higherorder term rewriting systems (OHRSs). In order to comfort our formalisation of the intuitive concept of family, we actually provide three conceptually different formalisations, via labelling, extraction and zigzag and show them to be equivalent. This generalises the results known from literature and gives a firm theoretical basis for the optimal implementation of OHRSs. 1. Introduction A computation of a result is optimal if its cost is minimal among all computations of the result. Taking rewrite steps as computational units the cost of a rewrite sequence is simply its length. Given a rewrite system the question then is: does an effective optimal strategy exist for it? In the case of lambda calculus, a discouraging result was obtained in [BBKV76]: th...
Calculi of Generalised βReduction and Explicit Substitutions: The TypeFree and Simply Typed Versions
, 1998
"... Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substit ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substitutions. We present a calculus, gs, that combines a calculus of explicit substitution, s, and a calculus with generalized reduction, g. We believe that gs is a useful extension of the  calculus, because it allows postponement of work in two different but complementary ways. Moreover, gs (and also s) satisfies properties desirable for calculi of explicit substitutions and generalized reductions. In particular, we show that gs preserves strong normalization, is a conservative extension of g, and simulates fireduction of g and the classical calculus. Furthermore, we study the simply typed versions of s and gs, and show that welltyped terms are strongly normalizing and that other properties,...
New Notions of Reduction and NonSemantic Proofs of Strong βNormalization in Typed λCalculi
 PROCEEDINGS OF LOGIC IN COMPUTER SCIENCE
, 1995
"... Two notions of reduction for terms of the λcalculus are introduced and the question of whether a λterm is βstrongly normalizing is reduced to the question of whether a λterm is merely normalizing under one of the notions of reduction. This gives a method to prove strong βnormalization for typ ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Two notions of reduction for terms of the λcalculus are introduced and the question of whether a λterm is βstrongly normalizing is reduced to the question of whether a λterm is merely normalizing under one of the notions of reduction. This gives a method to prove strong βnormalization for typed λcalculi. Instead of the usual semantic proof style based on Tait's realizability or Girard's "candidats de réductibilité", termination can be proved using a decreasing metric over a wellfounded ordering. This proof method is applied to the simplytyped λcalculus and the system of intersection types, giving the first nonsemantic proof for a polymorphic extension of the λcalculus.
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual red ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual redexes, i.e., redexes whose contraction in terms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in calculus and type theory. 1. Introduction Considerable attention has been devoted to classification of reduction strategies in typefree calculus [4, 6, 7, 15, 38, 44, 81]see also [2, Ch. 13]. We are concerned with strategies differing in the length of reduction paths. This paper draws on several sources. In late 1994, van Raamsdonk and Severi [59] and Srensen [66, 67] independently developed ...
Perpetuality and Uniform Normalization in Orthogonal Rewrite Systems
 INFORMATION AND COMPUTATION
"... We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due to Bergstra and Klop, and others. To unify our results with those in the literature, we introduce Contextsensitive Conditional Expression Reduction Systems (CCERSs) and prove confluence for orthogonal CCERSs. We then define a perpetual onestep reduction strategy which enables one to construct minimal (w.r.t. Levy's permutation ordering on reductions) infinite reductions in orthogonal CCERSs. We then prove (1) perpetuality (in a specific context) of a redex whose contraction does not erase potentially infinite arguments, which are possibly finite (i.e., strongly normalizable) arguments that may become infinite after a number of outside steps, and (2) perpetuality (in every con...
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual r ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual redexes, i.e., redexes whose contraction in λterms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in λcalculus and type theory.
Weak Normalization Implies Strong Normalization in Generalized NonDependent Pure Type Systems
 Comput. Sci
, 1997
"... The BarendregtGeuversKlop conjecture states that every weakly normalizing pure type system is also strongly normalizing. We show that this is true for a uniform class of systems which includes, e.g., the left hand side of Barendregt's cube as well as the system U . This seems to be the first resu ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
The BarendregtGeuversKlop conjecture states that every weakly normalizing pure type system is also strongly normalizing. We show that this is true for a uniform class of systems which includes, e.g., the left hand side of Barendregt's cube as well as the system U . This seems to be the first result giving a positive answer to the conjecture not merely for some concrete systems for which strong normalization is known to hold, but for a uniform class of systems in which not all systems are strongly normalizing. 1.
Strong normalization from weak normalization in typed λcalculi
 Information and Computation
, 1997
"... For some typed λcalculi it is easier to prove weak normalization than strong normalization. Techniques to infer the latter from the former have been invented over the last twenty years by Nederpelt, Klop, Khasidashvili, Karr, de Groote, and Kfoury and Wells. However, these techniques infer strong n ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
For some typed λcalculi it is easier to prove weak normalization than strong normalization. Techniques to infer the latter from the former have been invented over the last twenty years by Nederpelt, Klop, Khasidashvili, Karr, de Groote, and Kfoury and Wells. However, these techniques infer strong normalization of one notion of reduction from weak normalization of a more complicated notion of reduction. This paper presents a new technique to infer strong normalization of a notion of reduction in a typed λcalculus from weak normalization of the same notion of reduction. The technique is demonstrated to work on some wellknown systems including secondorder λcalculus and the system of positive, recursive types. It gives hope for a positive answer to the BarendregtGeuvers conjecture stating that every pure type system which is weakly normalizing is also strongly normalizing. The paper also analyzes the relationship between the techniques mentioned above, and reviews, in less detail, other techniques for proving strong normalization.