Results 1  10
of
988
Shape and motion from image streams under orthography: a factorization method
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1992
"... Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an illconditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orth ..."
Abstract

Cited by 1094 (38 self)
 Add to MetaCart
Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an illconditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orthography without computing depth as an intermediate step. An image stream can be represented by the 2FxP measurement matrix of the image coordinates of P points tracked through F frames. We show that under orthographic projection this matrix is of rank 3. Based on this observation, the factorization method uses the singularvalue decomposition technique to factor the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two of the three translation components are computed in a preprocessing stage. The method can also handle and obtain a full solution from a partially filledin measurement matrix that may result from occlusions or tracking failures. The method gives accurate results, and does not introduce smoothing in either shape or motion. We demonstrate this with a series of experiments on laboratory and outdoor image streams, with and without occlusions.
A Tutorial on Visual Servo Control
 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION
, 1996
"... This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review ..."
Abstract

Cited by 839 (26 self)
 Add to MetaCart
This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, positionbased and imagebased systems, are then discussed. Since any visual servo system must be capable of tracking image features in a sequence of images, we include an overview of featurebased and correlationbased methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 718 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minimization strategy. We enumerate and classify many of these variants, and evaluate their effect on the speed with which the correct alignment is reached. In order to improve convergence for nearlyflat meshes with small features, such as inscribed surfaces, we introduce a new variant based on uniform sampling of the space of normals. We conclude by proposing a combination of ICP variants optimized for high speed. We demonstrate an implementation that is able to align two range images in a few tens of milliseconds, assuming a good initial guess. This capability has potential application to realtime 3D model acquisition and modelbased tracking.
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 660 (8 self)
 Add to MetaCart
A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision, which is required for environment modeling (e.g., building a Digital Elevation Map). Objects are represented by a set of 3D points, which are considered as the samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based on iteratively matching points in one set to the closest points in the other. A statistical method based on the distance distribution is used to deal with outliers, occlusion, appearance and disappearance, which allows us to do subsetsubset matching. A leastsquares technique is used to estimate 3D motion from the point correspondences, which reduces the average distance between points in the two sets. Both synthetic and real data have been used to test the algorithm, and the results show that it is efficient and robust, and yields an accurate motion estimate.
Euclidean reconstruction from uncalibrated views
 Applications of Invariance in Computer Vision
, 1993
"... The possibility of calibrating a camera from image data alone, based on matched points identified in a series of images by a moving camera was suggested by Mayband and Faugeras. This result implies the possibility of Euclidean reconstruction from a series of images with a moving camera, or equivalen ..."
Abstract

Cited by 257 (14 self)
 Add to MetaCart
(Show Context)
The possibility of calibrating a camera from image data alone, based on matched points identified in a series of images by a moving camera was suggested by Mayband and Faugeras. This result implies the possibility of Euclidean reconstruction from a series of images with a moving camera, or equivalently, Euclidean structurefrommotion from an uncalibrated camera. No tractable algorithm for implementing their methods for more than three images have been previously reported. This paper gives a practical algorithm for Euclidean reconstruction from several views with the same camera. The algorithm is demonstrated on synthetic and real data and is shown to behave very robustly in the presence of noise giving excellent calibration and reconstruction results. 1
Multiview Registration for Large Data Sets
, 1999
"... In this paper we present a multiview registration method for aligning range data. We first align scans pairwise with each other and use the pairwise alignments as constraints that the multiview step enforces while evenly diffusing the pairwise registration errors. This approach is especially suitabl ..."
Abstract

Cited by 222 (1 self)
 Add to MetaCart
In this paper we present a multiview registration method for aligning range data. We first align scans pairwise with each other and use the pairwise alignments as constraints that the multiview step enforces while evenly diffusing the pairwise registration errors. This approach is especially suitable for registering large data sets, since using constraints from pairwise alignments does not require loading the entire data set into memory to perform the alignment. The alignment method is efficient, and it is less likely to get stuck into a local minimum than previous methods, and can be used in conjunction with any pairwise method based on aligning overlapping surface sections.
Modal Matching for Correspondence and Recognition
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Modal matching is a new method for establishing correspondences and computing canonical descriptions. The method is based on the idea of describing objects in terms of generalized symmetries, as defined by each object's eigenmodes. The resulting modal description is used for object recognition ..."
Abstract

Cited by 199 (8 self)
 Add to MetaCart
Modal matching is a new method for establishing correspondences and computing canonical descriptions. The method is based on the idea of describing objects in terms of generalized symmetries, as defined by each object's eigenmodes. The resulting modal description is used for object recognition and categorization, where shape similarities are expressed as the amounts of modal deformation energy needed to align the two objects. In general, modes provide a globaltolocal ordering of shape deformation and thus allow for selecting which types of deformations are used in object alignment and comparison. In contrast to previous techniques, which required correspondence to be computed with an initial or prototype shape, modal matching utilizes a new type of finite element formulation that allows for an object's eigenmodes to be computed directly from available image information. This improved formulation provides greater generality and accuracy, and is applicable to data of any dimensionality. Correspondence results with 2D contour and point feature data are shown, and recognition experiments with 2D images of hand tools and airplanes are described.
Making Faces
, 1998
"... We have created a system for capturing both the threedimensional geometry and color and shading information for human facial expressions. We use this data to reconstruct photorealistic, 3D animations of the captured expressions. The system uses a large set of sampling points on the face to accurate ..."
Abstract

Cited by 186 (2 self)
 Add to MetaCart
(Show Context)
We have created a system for capturing both the threedimensional geometry and color and shading information for human facial expressions. We use this data to reconstruct photorealistic, 3D animations of the captured expressions. The system uses a large set of sampling points on the face to accurately track the three dimensional deformations of the face. Simultaneously with the tracking of the geometric data, we capture multiple high resolution, registered video images of the face. These images are used to create a texture map sequence for a three dimensional polygonal face model which can then be rendered on standard 3D graphics hardware. The resulting facial animation is surprisingly lifelike and looks very much like the original live performance. Separating the capture of the geometry from the texture images eliminates much of the variance in the image data due to motion, which increases compression ratios. Although the primary emphasis of our work is not compression we have investigated the use of a novel method to compress the geometric data based on principal components analysis. The texture sequence is compressed using an MPEG4 video codec. Animations reconstructed from 512x512 pixel textures look good at data rates as low as 240 Kbits per second.
Meshless deformations based on shape matching
 ACM TRANS. GRAPH
, 2005
"... We present a new approach for simulating deformable objects. The underlying model is geometrically motivated. It handles pointbased objects and does not need connectivity information. The approach does not require any preprocessing, is simple to compute, and provides unconditionally stable dynamic ..."
Abstract

Cited by 169 (12 self)
 Add to MetaCart
We present a new approach for simulating deformable objects. The underlying model is geometrically motivated. It handles pointbased objects and does not need connectivity information. The approach does not require any preprocessing, is simple to compute, and provides unconditionally stable dynamic simulations. The main idea of our deformable model is to replace energies by geometric constraints and forces by distances of current positions to goal positions. These goal positions are determined via a generalized shape matching of an undeformed rest state with the current deformed state of the point cloud. Since points are always drawn towards welldefined locations, the overshooting problem of explicit integration schemes is eliminated. The versatility of the approach in terms of object representations that can be handled, the efficiency in terms of memory and computational complexity, and the unconditional stability of the dynamic simulation make the approach particularly interesting for games.