Results 1  10
of
212
Improved Boosting Algorithms Using Confidencerated Predictions
 MACHINE LEARNING
, 1999
"... We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find impr ..."
Abstract

Cited by 702 (26 self)
 Add to MetaCart
We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the multilabel case in which each example may belong to more than one class. We give two boosting methods for this problem, plus a third method based on output coding. One of these leads to a new method for handling the singlelabel case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we give some experimental results comparing a few of the algorithms discussed in this paper.
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 549 (25 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract

Cited by 540 (2 self)
 Add to MetaCart
Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in conjunction with a decision tree inducer (three variants) and a NaiveBayes inducer.
The purpose of the study is to improve our understanding of why and
when these algorithms, which use perturbation, reweighting, and
combination techniques, affect classification error. We provide a
bias and variance decomposition of the error to show how different
methods and variants influence these two terms. This allowed us to
determine that Bagging reduced variance of unstable methods, while
boosting methods (AdaBoost and Arcx4) reduced both the bias and
variance of unstable methods but increased the variance for NaiveBayes,
which was very stable. We observed that Arcx4 behaves differently
than AdaBoost if reweighting is used instead of resampling,
indicating a fundamental difference. Voting variants, some of which
are introduced in this paper, include: pruning versus no pruning,
use of probabilistic estimates, weight perturbations (Wagging), and
backfitting of data. We found that Bagging improves when
probabilistic estimates in conjunction with nopruning are used, as
well as when the data was backfit. We measure tree sizes and show
an interesting positive correlation between the increase in the
average tree size in AdaBoost trials and its success in reducing the
error. We compare the meansquared error of voting methods to
nonvoting methods and show that the voting methods lead to large
and significant reductions in the meansquared errors. Practical
problems that arise in implementing boosting algorithms are
explored, including numerical instabilities and underflows. We use
scatterplots that graphically show how AdaBoost reweights instances,
emphasizing not only "hard" areas but also outliers and noise.
BoosTexter: A Boostingbased System for Text Categorization
 MACHINE LEARNING
, 2000
"... This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text categor ..."
Abstract

Cited by 490 (21 self)
 Add to MetaCart
This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text categorization tasks. We present results comparing the performance of BoosTexter and a number of other textcategorization algorithms on a variety of tasks. We conclude by describing the application of our system to automatic calltype identification from unconstrained spoken customer responses.
Soft Margins for AdaBoost
, 1998
"... Recently ensemble methods like AdaBoost were successfully applied to character recognition tasks, seemingly defying the problems of overfitting. This paper shows that although AdaBoost rarely overfits in the low noise regime it clearly does so for higher noise levels. Central for understanding this ..."
Abstract

Cited by 256 (22 self)
 Add to MetaCart
Recently ensemble methods like AdaBoost were successfully applied to character recognition tasks, seemingly defying the problems of overfitting. This paper shows that although AdaBoost rarely overfits in the low noise regime it clearly does so for higher noise levels. Central for understanding this fact is the margin distribution and we find that AdaBoost achieves  doing gradient descent in an error function with respect to the margin  asymptotically a hard margin distribution, i.e. the algorithm concentrates its resources on a few hardtolearn patterns (here an interesting overlap emerge to Support Vectors). This is clearly a suboptimal strategy in the noisy case, and regularization, i.e. a mistrust in the data, must be introduced in the algorithm to alleviate the distortions that a difficult pattern (e.g. outliers) can cause to the margin distribution. We propose several regularization methods and generalizations of the original AdaBoost algorithm to achieve a soft margin  a ...
Applications of Resampling Methods to Estimate the Number of Clusters and to Improve the Accuracy of a Clustering Method
, 2001
"... The burgeoning field of genomics, and in particular microarray experiments, have revived interest in both discriminant and cluster analysis, by raising new methodological and computational challenges. The present paper discusses applications of resampling methods to problems in cluster analysis. A r ..."
Abstract

Cited by 168 (0 self)
 Add to MetaCart
The burgeoning field of genomics, and in particular microarray experiments, have revived interest in both discriminant and cluster analysis, by raising new methodological and computational challenges. The present paper discusses applications of resampling methods to problems in cluster analysis. A resampling method, known as bagging in discriminant analysis, is applied to increase clustering accuracy and to assess the confidence of cluster assignments for individual observations. A novel predictionbased resampling method is also proposed to estimate the number of clusters, if any, in a dataset. The performance of the proposed and existing methods are compared using simulated data and gene expression data from four recently published cancer microarray studies.
Learning Algorithms for Keyphrase Extraction
 INFORMATION RETRIEVAL
, 2000
"... Many academic journals ask their authors to provide a list of about five to fifteen keywords, to appear on the first page of each article. Since these key words are often phrases of two or more words, we prefer to call them keyphrases. There is a wide variety of tasks for which keyphrases are useful ..."
Abstract

Cited by 142 (3 self)
 Add to MetaCart
Many academic journals ask their authors to provide a list of about five to fifteen keywords, to appear on the first page of each article. Since these key words are often phrases of two or more words, we prefer to call them keyphrases. There is a wide variety of tasks for which keyphrases are useful, as we discuss in this paper. We approach the problem of automatically extracting keyphrases from text as a supervised learning task. We treat a document as a set of phrases, which the learning algorithm must learn to classify as positive or negative examples of keyphrases. Our first set of experiments applies the C4.5 decision tree induction algorithm to this learning task. We evaluate the performance of nine different configurations of C4.5. The second set of experiments applies the GenEx algorithm to the task. We developed the GenEx algorithm specifically for automatically extracting keyphrases from text. The experimental results support the claim that a customdesigned algorithm (GenEx)...
Prediction Games and Arcing Algorithms
, 1997
"... The theory behind the success of adaptive reweighting and combining algorithms (arcing) such as Adaboost (Freund and Schapire [1995].[1996]) and others in reducing generalization error has not been well understood. By formulating prediction, both classification and regression, as a game where one pl ..."
Abstract

Cited by 137 (0 self)
 Add to MetaCart
The theory behind the success of adaptive reweighting and combining algorithms (arcing) such as Adaboost (Freund and Schapire [1995].[1996]) and others in reducing generalization error has not been well understood. By formulating prediction, both classification and regression, as a game where one player makes a selection from instances in the training set and the other a convex linear combination of predictors from a finite set, existing arcing algorithms are shown to be algorithms for finding good game strategies. An optimal game strategy finds a combined predictor that minimizes the maximum of the error over the training set. A bound on the generalization error for the combined predictors in terms of their maximum error is proven that is sharper than bounds to date. Arcing algorithms are described that converge to the optimal strategy. Schapire et.al. [1997] offered an explanation of why Adaboost works in terms of its ability to reduce the margin. Comparing Adaboost to our optimal ar...
Boosting with the L_2Loss: Regression and Classification
, 2001
"... This paper investigates a variant of boosting, L 2 Boost, which is constructed from a functional gradient descent algorithm with the L 2 loss function. Based on an explicit stagewise re tting expression of L 2 Boost, the case of (symmetric) linear weak learners is studied in detail in both regressi ..."
Abstract

Cited by 123 (16 self)
 Add to MetaCart
This paper investigates a variant of boosting, L 2 Boost, which is constructed from a functional gradient descent algorithm with the L 2 loss function. Based on an explicit stagewise re tting expression of L 2 Boost, the case of (symmetric) linear weak learners is studied in detail in both regression and twoclass classification. In particular, with the boosting iteration m working as the smoothing or regularization parameter, a new exponential biasvariance trade off is found with the variance (complexity) term bounded as m tends to infinity. When the weak learner is a smoothing spline, an optimal rate of convergence result holds for both regression and twoclass classification. And this boosted smoothing spline adapts to higher order, unknown smoothness. Moreover, a simple expansion of the 01 loss function is derived to reveal the importance of the decision boundary, bias reduction, and impossibility of an additive biasvariance decomposition in classification. Finally, simulation and real data set results are obtained to demonstrate the attractiveness of L 2 Boost, particularly with a novel componentwise cubic smoothing spline as an effective and practical weak learner.