Results 1 
2 of
2
Proof nets for Herbrand’s Theorem
"... This paper explores Herbrand’s theorem as the source of a natural notion of abstract proof object for classical logic, embodying the “essence ” of a sequent calculus proof. We we see how to view a calculus of abstract Herbrand proofs (“Herbrand nets”) as an analytic proof system with syntactic cute ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
This paper explores Herbrand’s theorem as the source of a natural notion of abstract proof object for classical logic, embodying the “essence ” of a sequent calculus proof. We we see how to view a calculus of abstract Herbrand proofs (“Herbrand nets”) as an analytic proof system with syntactic cutelimination. Herbrand nets can also be seen as a natural generalization of Miller’s expansion tree proofs to a setting including cut. We demonstrate sequentialization of Herbrand nets into a sequent calculus LKH; each net corresponds to an equivalence class of LKH proofs under natural proof transformations. A surprising property of our cutreduction algorithm is that it is nonconfluent, despite not supporting the usual examples of nonconfluent reduction in classical logic.
Categories and Subject Descriptors: F4.1 [Mathematical logic and formal languages]: Mathematical
"... This paper explores Herbrand’s theorem as the source of a natural notion of abstract proof object for classical logic, embodying the “essence ” of a sequent calculus proof. We see how to view a calculus of abstract Herbrand proofs (“Herbrand nets”) as an analytic proof system with syntactic cutelim ..."
Abstract
 Add to MetaCart
This paper explores Herbrand’s theorem as the source of a natural notion of abstract proof object for classical logic, embodying the “essence ” of a sequent calculus proof. We see how to view a calculus of abstract Herbrand proofs (“Herbrand nets”) as an analytic proof system with syntactic cutelimination. Herbrand nets can also be seen as a natural generalization of Miller’s expansion tree proofs to a setting including cut. We demonstrate sequentialization of Herbrand nets into a sequent calculus LKH; each net corresponds to an equivalence class of LKH proofs under natural proof transformations. A surprising property of our cutreduction algorithm is that it is nonconfluent, despite not supporting the usual examples of nonconfluent reduction in classical logic.