Results 1  10
of
101
Alphastructural recursion and induction
 Journal of the ACM
, 2006
"... The nominal approach to abstract syntax deals with the issues of bound names and αequivalence by considering constructions and properties that are invariant with respect to permuting names. The use of permutations gives rise to an attractively simple formalisation of common, but often technically i ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
(Show Context)
The nominal approach to abstract syntax deals with the issues of bound names and αequivalence by considering constructions and properties that are invariant with respect to permuting names. The use of permutations gives rise to an attractively simple formalisation of common, but often technically incorrect uses of structural recursion and induction for abstract syntax modulo αequivalence. At the heart of this approach is the notion of finitely supported mathematical objects. This paper explains the idea in as concrete a way as possible and gives a new derivation within higherorder logic of principles of αstructural recursion and induction for αequivalence classes from the ordinary versions of these principles for abstract syntax trees.
Parametric HigherOrder Abstract Syntax for Mechanized Semantics
, 2008
"... We present parametric higherorder abstract syntax (PHOAS), a new approach to formalizing the syntax of programming languages in computer proof assistants based on type theory. Like higherorder abstract syntax (HOAS), PHOAS uses the meta language’s binding constructs to represent the object language ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
(Show Context)
We present parametric higherorder abstract syntax (PHOAS), a new approach to formalizing the syntax of programming languages in computer proof assistants based on type theory. Like higherorder abstract syntax (HOAS), PHOAS uses the meta language’s binding constructs to represent the object language’s binding constructs. Unlike HOAS, PHOAS types are definable in generalpurpose type theories that support traditional functional programming, like Coq’s Calculus of Inductive Constructions. We walk through how Coq can be used to develop certified, executable program transformations over several staticallytyped functional programming languages formalized with PHOAS; that is, each transformation has a machinechecked proof of type preservation and semantic preservation. Our examples include CPS translation and closure conversion for simplytyped lambda calculus, CPS translation for System F, and translation from a language with MLstyle pattern matching to a simpler language with no variablearity binding constructs. By avoiding the syntactic hassle associated with firstorder representation techniques, we achieve a very high degree of proof automation.
A Verified Compiler for an Impure Functional Language
, 2009
"... We present a verified compiler to an idealized assembly language from a small, untyped functional language with mutable references and exceptions. The compiler is programmed in the Coq proof assistant and has a proof of total correctness with respect to bigstep operational semantics for the source a ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
We present a verified compiler to an idealized assembly language from a small, untyped functional language with mutable references and exceptions. The compiler is programmed in the Coq proof assistant and has a proof of total correctness with respect to bigstep operational semantics for the source and target languages. Compilation is staged and includes standard phases like translation to continuationpassing style and closure conversion, as well as a common subexpression elimination optimization. In this work, our focus has been on discovering and using techniques that make our proofs easy to engineer and maintain. While most programming language work with proof assistants uses very manual proof styles, all of our proofs are implemented as adaptive programs in Coq’s tactic language, making it possible to reuse proofs unchanged as new language features are added. In this paper, we focus especially on phases of compilation that rearrange the structure of syntax with nested variable binders. That aspect has been a key challenge area in past compiler verification projects, with much more effort expended in the statement and proof of binderrelated lemmas than is found in standard pencilandpaper proofs. We show how to exploit the representation technique of parametric higherorder abstract syntax to avoid the need to prove any of the usual lemmas about binder manipulation, often leading to proofs that are actually shorter than their pencilandpaper analogues. Our strategy is based on a new approach to encoding operational semantics which delegates all concerns about substitution to the meta language, without using features incompatible with generalpurpose type theories like Coq’s logic.
The Abella interactive theorem prover (system description
 In Fourth International Joint Conference on Automated Reasoning
, 2008
"... Abella [3] is an interactive system for reasoning about aspects of object languages that have been formally presented through recursive rules based on syntactic structure. Abella utilizes a twolevel logic approach to specification and reasoning. One level is defined by a specification logic which s ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
(Show Context)
Abella [3] is an interactive system for reasoning about aspects of object languages that have been formally presented through recursive rules based on syntactic structure. Abella utilizes a twolevel logic approach to specification and reasoning. One level is defined by a specification logic which supports a transparent
Psicalculi: Mobile processes, nominal data, and logic
 In Proceedings of LICS 2009
"... A psicalculus is an extension of the picalculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard picalculus mechanism to allow for scope migr ..."
Abstract

Cited by 27 (11 self)
 Add to MetaCart
(Show Context)
A psicalculus is an extension of the picalculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard picalculus mechanism to allow for scope migrations. Other proposed extensions of the picalculus can be formulated as psicalculi; examples include the applied picalculus, the spicalculus, the fusion calculus, the concurrent constraint picalculus, and calculi with polyadic communication channels or pattern matching. Psicalculi can be even more general, for example by allowing structured channels, higherorder formalisms such as the lambda calculus for data structures, and a predicate logic for assertions. Our labelled operational semantics and definition of bisimulation is straightforward, without a structural congruence. We establish minimal requirements on the nominal data and logic in order to prove general algebraic properties of psicalculi. The proofs have been checked in the interactive proof checker Isabelle. We are the first to formulate a truly compositional labelled operational semantics for calculi of this calibre. Expressiveness and therefore modelling convenience significantly exceeds that of other formalisms, while the purity of the semantics is on par with the original picalculus. 1
Barendregt’s variable convention in rule inductions
 In Proc. of the 21th International Conference on Automated Deduction (CADE), volume 4603 of LNAI
, 2007
"... Abstract. Inductive definitions and rule inductions are two fundamental reasoning tools in logic and computer science. When inductive definitions involve binders, then Barendregt's variable convention is nearly always employed (explicitly or implicitly) in order to obtain simple proofs. Using t ..."
Abstract

Cited by 25 (8 self)
 Add to MetaCart
(Show Context)
Abstract. Inductive definitions and rule inductions are two fundamental reasoning tools in logic and computer science. When inductive definitions involve binders, then Barendregt's variable convention is nearly always employed (explicitly or implicitly) in order to obtain simple proofs. Using this convention, one does not consider truly arbitrary bound names, as required by the rule induction principle, but rather bound names about which various freshness assumptions are made. Unfortunately, neither Barendregt nor others give a formal justification for the variable convention, which makes it hard to formalise such proofs. In this paper we identify conditions an inductive definition has to satisfy so that a form of the variable convention can be built into the rule induction principle. In practice this means we come quite close to the informal reasoning of &quot;pencilandpaper &quot; proofs, while remaining completely formal. Our conditions also reveal circumstances in which Barendregt's variable convention is not applicable, and can even lead to faulty reasoning. 1 Introduction In informal proofs about languages that feature bound variables, one often assumes (explicitly or implicitly) a rather convenient convention about those bound variables. Barendregt's statement of the convention is: Variable Convention: If M1; : : : ; Mn occur in a certain mathematical context (e.g. definition, proof), then in these terms all bound variables are chosen to be different from the free variables. [2, Page 26]
A recursion combinator for nominal datatypes implemented in Isabelle/HOL
 IN PROC. OF THE 3RD INTERNATIONAL JOINT CONFERENCE ON AUTOMATED REASONING (IJCAR), VOLUME 4130 OF LNAI
, 2006
"... The nominal datatype package implements an infrastructure in Isabelle/HOL for defining languages involving binders and for reasoning conveniently about alphaequivalence classes. Pitts stated some general conditions under which functions over alphaequivalence classes can be defined by a form of str ..."
Abstract

Cited by 24 (9 self)
 Add to MetaCart
(Show Context)
The nominal datatype package implements an infrastructure in Isabelle/HOL for defining languages involving binders and for reasoning conveniently about alphaequivalence classes. Pitts stated some general conditions under which functions over alphaequivalence classes can be defined by a form of structural recursion and gave a clever proof for the existence of a primitiverecursion combinator. We give a version of this proof that works directly over nominal datatypes and does not rely upon auxiliary constructions. We further introduce proving tools and a heuristic that made the automation of our proof tractable. This automation is an essential prerequisite for the nominal datatype package to become useful.
A Definitional TwoLevel Approach to Reasoning with HigherOrder Abstract Syntax
 Journal of Automated Reasoning
, 2010
"... Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use it in a multilevel reasoning fashion, similar in spirit to other metalogics such as Linc and Twelf. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of nonstratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuationmachine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly
Combining generic judgments with recursive definitions
 in "23th Symp. on Logic in Computer Science", F. PFENNING (editor), IEEE Computer Society Press, 2008, p. 33–44, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf US
"... Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow di ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
(Show Context)
Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow direct, logicbased reasoning about such descriptions: the treatment of atomic judgments as fixed points (recursive definitions) and an encoding of binding constructs via generic judgments. However, the logics encompassing these two features have thus far treated them orthogonally. In particular, they have not contained the ability to form definitions of objectlogic properties that themselves depend on an intrinsic treatment of binding. We propose a new and simple integration of these features within an intuitionistic logic enhanced with induction over natural numbers and we show that the resulting logic is consistent. The pivotal part of the integration allows recursive definitions to define generic judgments in general and not just the simpler atomic judgments that are traditionally allowed. The usefulness of this logic is illustrated by showing how it can provide elegant treatments of objectlogic contexts that appear in proofs involving typing calculi and arbitrarily cascading substitutions in reducibility arguments.
Scrap your Nameplate  Functional Pearl
"... Recent research has shown how boilerplate code, or repetitive code for traversing datatypes, can be eliminated using generic programming techniques already available within some implementations of Haskell. One particularly intractable kind of boilerplate is nameplate, or code having to do with names ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
Recent research has shown how boilerplate code, or repetitive code for traversing datatypes, can be eliminated using generic programming techniques already available within some implementations of Haskell. One particularly intractable kind of boilerplate is nameplate, or code having to do with names, namebinding, and fresh name generation. One reason for the difficulty is that operations on data structures involving names, as usually implemented, are not regular instances of standard map, fold , or zip operations. However, in nominal abstract syntax, an alternative treatment of names and binding based on swapping, operations such as #equivalence, captureavoiding substitution, and free variable set functions are much betterbehaved.