Results 1  10
of
36
Computability and recursion
 BULL. SYMBOLIC LOGIC
, 1996
"... We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they b ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful historical and conceptual analysis of computability and recursion we make several recommendations in section §7 about preserving the intensional differences between the concepts of “computability” and “recursion.” Specifically we recommend that: the term “recursive ” should no longer carry the additional meaning of “computable” or “decidable;” functions defined using Turing machines, register machines, or their variants should be called “computable” rather than “recursive;” we should distinguish the intensional difference between Church’s Thesis and Turing’s Thesis, and use the latter particularly in dealing with mechanistic questions; the name of the subject should be “Computability Theory” or simply Computability rather than
Total Functional Programming
 Journal of Universal Computer Science
, 2004
"... We now define the notion, already discussed, of an effectively calculable function of positive integers by identifying it with the notion of a recursive function of positive integers (or of a lambdadefinable function of positive integers). The phrase in parentheses refers to the apparatus which Chur ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
We now define the notion, already discussed, of an effectively calculable function of positive integers by identifying it with the notion of a recursive function of positive integers (or of a lambdadefinable function of positive integers). The phrase in parentheses refers to the apparatus which Church had developed to investigate this and other problems in the foundations of mathematics: the calculus of lambda conversion. Both the Thesis and the lambda calculus have been of seminal influence on the development of Computing Science. The main subject of this article is the lambda calculus but I will begin with a brief sketch of the emergence of the Thesis. The epistemological status of Church’s Thesis is not immediately clear from the above quotation and remains a matter of debate, as is explored in other papers of this volume. My own view, which I will state but not elaborate here, is that the thesis is empirical because it relies for its significance on a claim about what can be calculated by mechanisms. This becomes clearer in
A NATURAL AXIOMATIZATION OF COMPUTABILITY AND PROOF OF CHURCH’S THESIS
"... Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally e ..."
Abstract

Cited by 21 (10 self)
 Add to MetaCart
Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church’s Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing’s Thesis, characterizing the effective string functions, and—in particular—the effectivelycomputable functions on string representations of numbers.
Programmability of Chemical Reaction Networks
"... Summary. Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a wellstirred solution according to standard c ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Summary. Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a wellstirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and
Church’s Thesis and the Conceptual Analysis of Computability
 Notre Dame Journal of Formal Logic
, 2007
"... ..."
Termination, ACTermination and Dependency Pairs of Term Rewriting Systems
 Ph.D. thesis, JAIST
, 2000
"... Copyright c ○ 2000 by Keiichirou KUSAKARI Recently, Arts and Giesl introduced the notion of dependency pairs, which gives effective methods for proving termination of term rewriting systems (TRSs). In this thesis, we extend the notion of dependency pairs to ACTRSs, and introduce new methods for eff ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Copyright c ○ 2000 by Keiichirou KUSAKARI Recently, Arts and Giesl introduced the notion of dependency pairs, which gives effective methods for proving termination of term rewriting systems (TRSs). In this thesis, we extend the notion of dependency pairs to ACTRSs, and introduce new methods for effectively proving ACtermination. Since it is impossible to directly apply the notion of dependency pairs to ACTRSs, we introduce the head parts in terms and show an analogy between the root positions in infinite reduction sequences by TRSs and the head positions in those by ACTRSs. Indeed, this analogy is essential for the extension of dependency pairs to ACTRSs. Based on this analogy, we define ACdependency pairs. To simplify the task of proving termination and ACtermination, several elimination transformations such as the dummy elimination, the distribution elimination, the general dummy elimination and the improved general dummy elimination, have been proposed. In this thesis, we show that the argument filtering method combined with the ACdependency pair technique is essential in all the elimination transformations above. We present remarkable simple proofs for the soundness of these elimination transformations based on this observation. Moreover, we propose a new elimination transformation, called the argument filtering transformation, which is not only more powerful than all the other elimination transformations but also especially useful to make clear an essential relationship among them.
Turing Oracle Machines, Online Computing, and Three Displacements in Computability Theory
, 2009
"... ..."
Beyond Gödel's Theorem: Turing Nonrigidity Revisited
 In Logic Colloquium ’95
, 1998
"... xperience, but simply as irreducible points comparable, epistemologically, to the gods of Homer.") Of course, the theory itself does indicate di#culties in substantiating the Turing model, but, if not overstretched (viz. the ubiquitous Godel's [15], [16] Theorem) such asymptotic representations can ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
xperience, but simply as irreducible points comparable, epistemologically, to the gods of Homer.") Of course, the theory itself does indicate di#culties in substantiating the Turing model, but, if not overstretched (viz. the ubiquitous Godel's [15], [16] Theorem) such asymptotic representations can be useful and productive adjuncts to subjective intuition. For instance, unlike in mathematics where small variations in axioms can lead to fundamentally di#erent theories, Turing nonrigidity and known countable automorphism bases indicate that although diverse basic assumptions about the real world, related to culture or religion, for example, are inevitable (perhaps even necessary), relative to the Turing model there is a convergence at higher levels of the informational structure suggested by relative rigidity of substructures. The purpose of this note is to describe how, at a more basic level, the material Universe can be modelled according to the underlying structure of
Computability and Incomputability
"... The conventional wisdom presented in most computability books and historical papers is that there were several researchers in the early 1930’s working on various precise definitions and demonstrations of a function specified by a finite procedure and that they should all share approximately equal cr ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The conventional wisdom presented in most computability books and historical papers is that there were several researchers in the early 1930’s working on various precise definitions and demonstrations of a function specified by a finite procedure and that they should all share approximately equal credit. This is incorrect. It was Turing alone who achieved the characterization, in the opinion of Gödel. We also explore Turing’s oracle machine and its analogous properties in analysis. Keywords: Turing amachine, computability, ChurchTuring Thesis, Kurt Gödel, Alan Turing, Turing omachine, computable approximations,