Results 1 
3 of
3
THERE ARE INFINITELY MANY PERRIN PSEUDOPRIMES
"... Abstract. We prove the existence of infinitely many Perrin pseudoprimes, as conjectured by Adams and Shanks in 1982. The theorem proven covers a general class of pseudoprimes based on recurrence sequences. We use ingredients of the proof of the infinitude many Carmichael numbers, along with zeroden ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We prove the existence of infinitely many Perrin pseudoprimes, as conjectured by Adams and Shanks in 1982. The theorem proven covers a general class of pseudoprimes based on recurrence sequences. We use ingredients of the proof of the infinitude many Carmichael numbers, along with zerodensity estimates for Hecke Lfunctions. 1. Background In a 1982 paper [1], Adams and Shanks introduced a probable primality test based on third order recurrence sequences. The following is a version of that test. Consider sequences An = An(r, s) defined by the following relations: A−1 = s, A0 = 3, A1 = r, and An = rAn−1 − sAn−2 + An−3. Let f(x) = x 3 − rx 2 + sx − 1 be the associated polynomial and ∆ its discriminant. (Perrin’s sequence is An(0, −1).) Definition. The signature mod m of an integer n with respect to the sequence Ak(r, s) is the 6tuple (A−n−1, A−n, A−n+1, An−1, An, An+1) mod m. Definitions. An integer n is said to have an Ssignature if its signature mod n is congruent to (A−2, A−1, A0, A0, A1, A2). An integer n is said to have a Qsignature if its signature mod n is congruent to (A, s, B, B, r, C), where for some integer a with f(a) ≡ 0 mod n, A ≡ a −2 + 2a, B ≡ −ra 2 + (r 2 − s)a, and C ≡ a 2 + 2a −1. An integer n is said to have an Isignature if its signature mod n is congruent to (r, s, D ′ , D, r, s), where D ′ + D ≡ rs − 3 mod n and (D ′ − D) 2 ≡ ∆. Definition. A Perrin pseudoprime with parameters (r, s) is an odd composite n such that either
Pseudoprimes: A Survey Of Recent Results
, 1992
"... this paper, we aim at presenting the most recent results achieved in the theory of pseudoprime numbers. First of all, we make a list of all pseudoprime varieties existing so far. This includes Lucaspseudoprimes and the generalization to sequences generated by integer polynomials modulo N , elliptic ..."
Abstract
 Add to MetaCart
this paper, we aim at presenting the most recent results achieved in the theory of pseudoprime numbers. First of all, we make a list of all pseudoprime varieties existing so far. This includes Lucaspseudoprimes and the generalization to sequences generated by integer polynomials modulo N , elliptic pseudoprimes. We discuss the making of tables and the consequences on the design of very fast primality algorithms for small numbers. Then, we describe the recent work of Alford, Granville and Pomerance, in which they prove that there