Results 1  10
of
64
Robust Solutions To LeastSquares Problems With Uncertain Data
, 1997
"... . We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpret ..."
Abstract

Cited by 181 (13 self)
 Add to MetaCart
. We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on the robustness of solution, and a rigorous way to compute the regularization parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be solved in polynomialtime using semidefinite programming (SDP). We also consider the case when A; b are rational functions of an unknownbutbounded perturbation vector. We show how to minimize (via SDP) upper bounds on the optimal worstcase residual. We provide numerical examples, including one from robust identification and one from robust interpolation. Key Words. Leastsquares, uncertainty, robustness, secondorder cone...
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 105 (16 self)
 Add to MetaCart
(Show Context)
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
Optimal linear cooperation for spectrum sensing in cognitive radio networks
 IEEE J. Sel. Topics Signal Process
, 2008
"... Abstract—Cognitive radio technology has been proposed to improve spectrum efficiency by having the cognitive radios act as secondary users to opportunistically access underutilized frequency bands. Spectrum sensing, as a key enabling functionality in cognitive radio networks, needs to reliably det ..."
Abstract

Cited by 80 (3 self)
 Add to MetaCart
(Show Context)
Abstract—Cognitive radio technology has been proposed to improve spectrum efficiency by having the cognitive radios act as secondary users to opportunistically access underutilized frequency bands. Spectrum sensing, as a key enabling functionality in cognitive radio networks, needs to reliably detect signals from licensed primary radios to avoid harmful interference. However, due to the effects of channel fading/shadowing, individual cognitive radios may not be able to reliably detect the existence of a primary radio. In this paper, we propose an optimal linear cooperation framework for spectrum sensing in order to accurately detect the weak primary signal. Within this framework, spectrum sensing is based on the linear combination of local statistics from individual cognitive radios. Our objective is to minimize the interference to the primary radio while meeting the requirement of opportunistic spectrum utilization. We formulate the sensing problem as a nonlinear optimization problem. By exploiting the inherent structures in the problem formulation, we develop efficient algorithms to solve for the optimal solutions. To further reduce the computational complexity and obtain solutions for more general cases, we finally propose a heuristic approach, where we instead optimize a modified deflection coefficient that characterizes the probability distribution function of the global test statistics at the fusion center. Simulation results illustrate significant cooperative gain achieved by the proposed strategies. The insights obtained in this paper are useful for the design of optimal spectrum sensing in cognitive radio networks. Index Terms—Cognitive radio, cooperative communications, energy detection, nonlinear optimization, spectrum sensing. I.
Handbook of semidefinite programming
"... Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, con ..."
Abstract

Cited by 74 (2 self)
 Add to MetaCart
Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity was spurred by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interiorpoint algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. This book includes nineteen chapters on the theory, algorithms, and applications of semidefinite programming. Written by the leading experts on the subject, it offers an advanced and broad overview of the current state of the field. The coverage is somewhat less comprehensive, and the overall level more advanced, than we had planned at the start of the project. In order to finish the book in a timely fashion, we have had to abandon hopes for separate chapters on some important topics (such as a discussion of SDP algorithms in the
A semidefinite framework for trust region subproblems with applications to large scale minimization
, 2002
"... ..."
(Show Context)
A New MatrixFree Algorithm for the LargeScale TrustRegion Subproblem
, 1995
"... The trustregion subproblem arises frequently in linear algebra and optimization applications. Recently, matrixfree methods have been introduced to solve large scale trustregion subproblems. These methods only require a matrixvector product and do not rely on matrix factorizations [4, 7]. The ..."
Abstract

Cited by 58 (9 self)
 Add to MetaCart
(Show Context)
The trustregion subproblem arises frequently in linear algebra and optimization applications. Recently, matrixfree methods have been introduced to solve large scale trustregion subproblems. These methods only require a matrixvector product and do not rely on matrix factorizations [4, 7]. These approaches recast the trust region subproblem in terms of a parameterized eigenvalue problem and then adjust the parameter to find the optimal solution from the eigenvector corresponding to the smallest eigenvalue of the parameterized eigenvalue problem. This paper presents a new matrixfree algorithm for the largescale trustregion subproblem. The new algorithm improves upon the previous algorithms by introducing a unified iteration that naturally includes the so called hard case. The new iteration is shown to be superlinearly convergent in all cases. Computational results are presented to illustrate convergence properties and robustness of the method.
TrustRegion InteriorPoint Algorithms For Minimization Problems With Simple Bounds
 SIAM J. CONTROL AND OPTIMIZATION
, 1995
"... Two trustregion interiorpoint algorithms for the solution of minimization problems with simple bounds are analyzed and tested. The algorithms scale the local model in a way similar to Coleman and Li [1]. The first algorithm is more usual in that the trust region and the local quadratic model are c ..."
Abstract

Cited by 54 (18 self)
 Add to MetaCart
Two trustregion interiorpoint algorithms for the solution of minimization problems with simple bounds are analyzed and tested. The algorithms scale the local model in a way similar to Coleman and Li [1]. The first algorithm is more usual in that the trust region and the local quadratic model are consistently scaled. The second algorithm proposed here uses an unscaled trust region. A global convergence result for these algorithms is given and dogleg and conjugategradient algorithms to compute trial steps are introduced. Some numerical examples that show the advantages of the second algorithm are presented.
A recipe for semidefinite relaxation for 01 quadratic programming
 JOURNAL OF GLOBAL OPTIMIZATION
, 1995
"... We review various relaxations of (0,1)quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the followi ..."
Abstract

Cited by 53 (7 self)
 Add to MetaCart
We review various relaxations of (0,1)quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and simple way. Some of these equivalences have been known previously, but our approach leads to short and transparent proofs. Moreover we extend the approach to the case of equality constrained problems by taking the squared linear constraints into the objective function. We show how this technique can be applied to the Quadratic Assignment Problem, the Graph Partition Problem and the MaxClique Problem. Finally we show our relaxation to be best possible among all quadratic majorants with zero trace.
New Results on Quadratic Minimization
, 2001
"... In this paper we present several new results on minimizing an indefinite quadratic function under quadratic/linear constraints. The emphasis is placed on the case where the constraints are two quadratic inequalities. This formulation is known as the extended trust region subproblem and the computati ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
(Show Context)
In this paper we present several new results on minimizing an indefinite quadratic function under quadratic/linear constraints. The emphasis is placed on the case where the constraints are two quadratic inequalities. This formulation is known as the extended trust region subproblem and the computational complexity of this problem is still unknown. We consider several interesting cases related to this problem and show that for those cases the corresponding SDP relaxation admits no gap with the true optimal value, and consequently we obtain polynomial time procedures for solving those special cases of quadratic optimization. For the extended trust region subproblem itself, we introduce a parameterized problem and prove the existence of a trajectory which will lead to an optimal solution. Combining with a result obtained in the first part of the paper, we propose a polynomialtime solution procedure for the extended trust region subproblem arising from solving nonlinear programs with a single equality constraint.
On Lagrangian relaxation of quadratic matrix constraints
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equ ..."
Abstract

Cited by 50 (18 self)
 Add to MetaCart
(Show Context)
Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs and trust region subproblems, the Lagrangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective. In this paper we consider a certain QQP where the quadratic constraints correspond to the matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based on relaxing the constraints XXT = I and the seemingly redundant constraints XT X = I has a zero duality gap. This result has natural applications to quadratic assignment and graph partitioning problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to obtain a strengthened semidefinite relaxation for the maxcut problem. Key words. Lagrangian relaxations, quadratically constrained quadratic programs, semidefinite programming, quadratic assignment, graph partitioning, maxcut problems