Results 1  10
of
214
An Application of Recurrent Nets to Phone Probability Estimation
 IEEE Transactions on Neural Networks
, 1994
"... This paper presents an application of recurrent networks for phone probability estimation in large vocabulary speech recognition. The need for efficient exploitation of context information is discussed ..."
Abstract

Cited by 193 (8 self)
 Add to MetaCart
This paper presents an application of recurrent networks for phone probability estimation in large vocabulary speech recognition. The need for efficient exploitation of context information is discussed
Gradient calculation for dynamic recurrent neural networks: a survey
 IEEE Transactions on Neural Networks
, 1995
"... Abstract  We survey learning algorithms for recurrent neural networks with hidden units, and put the various techniques into a common framework. We discuss xedpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non xedpoint algorithms, namely backp ..."
Abstract

Cited by 135 (3 self)
 Add to MetaCart
Abstract  We survey learning algorithms for recurrent neural networks with hidden units, and put the various techniques into a common framework. We discuss xedpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non xedpoint algorithms, namely backpropagation through time, Elman's history cuto, and Jordan's output feedback architecture. Forward propagation, an online technique that uses adjoint equations, and variations thereof, are also discussed. In many cases, the uni ed presentation leads to generalizations of various sorts. We discuss advantages and disadvantages of temporally continuous neural networks in contrast to clocked ones, continue with some \tricks of the trade" for training, using, and simulating continuous time and recurrent neural networks. We present somesimulations, and at the end, address issues of computational complexity and learning speed.
Connectionist Probability Estimation in HMM Speech Recognition
 IEEE Transactions on Speech and Audio Processing
, 1992
"... This report is concerned with integrating connectionist networks into a hidden Markov model (HMM) speech recognition system, This is achieved through a statistical understanding of connectionist networks as probability estimators, first elucidated by Herve Bourlard. We review the basis of HMM speech ..."
Abstract

Cited by 61 (16 self)
 Add to MetaCart
This report is concerned with integrating connectionist networks into a hidden Markov model (HMM) speech recognition system, This is achieved through a statistical understanding of connectionist networks as probability estimators, first elucidated by Herve Bourlard. We review the basis of HMM speech recognition, and point out the possible benefits of incorporating connectionist networks. We discuss some issues necessary to the construction of a connectionist HMM recognition system, and describe the performance of such a system, including evaluations on the DARPA database, in collaboration with Mike Cohen and Horacio Franco of SRI International. In conclusion, we show that a connectionist component improves a state of the art HMM system. ii Part I INTRODUCTION Over the past few years, connectionist models have been widely proposed as a potentially powerful approach to speech recognition (e.g. Makino et al. (1983), Huang et al. (1988) and Waibel et al. (1989)). However, whilst connec...
Nonlinear Adaptive Inverse Control
, 1997
"... Adaptive control is seen as a two part problem, (a) control of plant dynamics, and (b) control of plant disturbance. Conventionally, one uses feedback control to treat both problems simultaneously. Tradeoffs and compromises are necessary to achieve good solutions, however. ..."
Abstract

Cited by 58 (2 self)
 Add to MetaCart
Adaptive control is seen as a two part problem, (a) control of plant dynamics, and (b) control of plant disturbance. Conventionally, one uses feedback control to treat both problems simultaneously. Tradeoffs and compromises are necessary to achieve good solutions, however.
Energybased models for sparse overcomplete representations
 Journal of Machine Learning Research
, 2003
"... We present a new way of extending independent components analysis (ICA) to overcomplete representations. In contrast to the causal generative extensions of ICA which maintain marginal independence of sources, we define features as deterministic (linear) functions of the inputs. This assumption resul ..."
Abstract

Cited by 51 (14 self)
 Add to MetaCart
We present a new way of extending independent components analysis (ICA) to overcomplete representations. In contrast to the causal generative extensions of ICA which maintain marginal independence of sources, we define features as deterministic (linear) functions of the inputs. This assumption results in marginal dependencies among the features, but conditional independence of the features given the inputs. By assigning energies to the features a probability distribution over the input states is defined through the Boltzmann distribution. Free parameters of this model are trained using the contrastive divergence objective (Hinton, 2002). When the number of features is equal to the number of input dimensions this energybased model reduces to noiseless ICA and we show experimentally that the proposed learning algorithm is able to perform blind source separation on speech data. In additional experiments we train overcomplete energybased models to extract features from various standard datasets containing speech, natural images, handwritten digits and faces.
Recurrent neural networks and robust time series prediction
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 1994
"... We propose a robust learning algorithm and apply it to recurrent neural networks. This algorithm is based on filtering outliers from the data and then estimating parameters from the filtered data. The filtering removes outliers from both the target function and the inputs of the neural network. The ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
We propose a robust learning algorithm and apply it to recurrent neural networks. This algorithm is based on filtering outliers from the data and then estimating parameters from the filtered data. The filtering removes outliers from both the target function and the inputs of the neural network. The filtering is soff in that some outliers are neither completely rejected nor accepted. To show the need for robust recurrent networks, we compare the predictive ability of least squares estimated recurrent networks on synthetic data and on the Puget Power Electric Demand time series. These investigations result in a class of recurrent neural networks, NARMA(p, q), which show advantages over feedforward neural networks for time series with a moving average component. Conventional least squares methods of fitting NARMA(p,q) neural network models are shown to suffer a lack of robustness towards outliers. This sensitivity to outliers is demonstrated on both the synthetic and real data sets. Filtering the Puget Power Electric Demand time series is shown to automatically remove the outliers due to holidays. Neural networks trained on filtered data are then shown to give better predictions than neural networks trained on unfiltered time series.
Problem Solving With Reinforcement Learning
, 1995
"... This dissertation is submitted for consideration for the dwree of Doctor' of Philosophy at the Uziver'sity of Cambr'idge Summary This thesis is concerned with practical issues surrounding the application of reinforcement lear'ning techniques to tasks that take place in high dimensional continuous ..."
Abstract

Cited by 45 (0 self)
 Add to MetaCart
This dissertation is submitted for consideration for the dwree of Doctor' of Philosophy at the Uziver'sity of Cambr'idge Summary This thesis is concerned with practical issues surrounding the application of reinforcement lear'ning techniques to tasks that take place in high dimensional continuous statespace environments. In particular, the extension of online updating methods is considered, where the term implies systems that learn as each experience arrives, rather than storing the experiences for use in a separate offline learning phase. Firstly, the use of alternative update rules in place of standard Qlearning (Watkins 1989) is examined to provide faster convergence rates. Secondly, the use of multilayer perceptton (MLP) neural networks (Rumelhart, Hinton and Williams 1986) is investigated to provide suitable generalising function approximators. Finally, consideration is given to the combination of Adaptive Heuristic Critic (AHC) methods and Qlearning to produce systems combining the benefits of realvalued actions and discrete switching
Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 1998
"... Three networks are compared for low false alarm stock trend predictions. Shortterm trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
Three networks are compared for low false alarm stock trend predictions. Shortterm trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves the risk/reward ratio by preventing losses. To predict stock trends, we exploit time delay, recurrent, and probabilistic neural networks (TDNN, RNN, and PNN, respectively), utilizing conjugate gradient and multistream extended Kalman filter training for TDNN and RNN. We also discuss different predictability analysis techniques and perform an analysis of predictability based on a history of daily closing price. Our results indicate that all the networks are feasible, the primary preference being one of convenience.
Learning to Trade via Direct Reinforcement
, 2001
"... We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent r ..."
Abstract

Cited by 35 (1 self)
 Add to MetaCart
We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting models is eliminated, and better trading performance is obtained. The direct reinforcement approach differs from dynamic programming and reinforcement algorithms such as TDlearning and Qlearning, which attempt to estimate a value function for the control problem. We find that the RRL direct reinforcement framework enables a simpler problem representation, avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. We demonstrate how direct reinforcement can be used to optimize riskadjusted investment returns (including the differential Sharpe ratio), while accounting for the effects of transaction costs. In extensive simulation work using real financial data, we find that our approach based on RRL produces better trading strategies than systems utilizing QLearning (a value function method). Realworld applications include an intradaily currency trader and a monthly asset allocation system for the S&P 500 Stock Index and TBills.