Results 1  10
of
204
On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts  Towards Memetic Algorithms
, 1989
"... Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that one could ..."
Abstract

Cited by 186 (10 self)
 Add to MetaCart
Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that one could possibly enumerate 10 9 tours per second on a computer it would thus take roughly 10 639 years of computing to establish the optimality of this tour by exhaustive enumeration." This quote shows the real difficulty of a combinatorial optimization problem. The huge number of configurations is the primary difficulty when dealing with one of these problems. The quote belongs to M.W Padberg and M. Grotschel, Chap. 9., "Polyhedral computations", from the book The Traveling Salesman Problem: A Guided tour of Combinatorial Optimization [124]. It is interesting to compare the number of configurations of realworld problems in combinatorial optimization with those large numbers arising in Cosmol...
Complexity and Approximation
, 1999
"... Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance ..."
Abstract

Cited by 176 (1 self)
 Add to MetaCart
Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance I. How can we exploit the knowledge we have on the solution of instance I to compute a (approximate) solution of instance I ′ in an efficient way? This computation model is called reoptimization and is of practical interest in various circumstances. In this article we first discuss what kind of performance we can expect for specific classes of problems and then we present some classical optimization problems (i.e. Max Knapsack, Min Steiner Tree, Scheduling) in which this approach has been fruitfully applied. Subsequently, we address vehicle routing problems and we show how the reoptimization approach can be used to obtain good approximate solution in an efficient way for some of these problems. 1
Admissible Heuristics for Optimal Planning
 In Proceedings of AIPS00
, 2000
"... hsp and hspr are two recent planners that search the statespace using an heuristic function extracted from Strips encodings. hsp does a forward search from the initial state recomputing the heuristic in every state, while hspr does a regression search from the goal computing a suitable representati ..."
Abstract

Cited by 169 (21 self)
 Add to MetaCart
hsp and hspr are two recent planners that search the statespace using an heuristic function extracted from Strips encodings. hsp does a forward search from the initial state recomputing the heuristic in every state, while hspr does a regression search from the goal computing a suitable representation of the heuristic only once. Both planners have shown good performance, often producing solutions that are competitive in time and number of actions with the solutions found by Graphplan and sat planners. hsp and hspr, however, are not optimal planners. This is because the heuristic function is not admissible and the search algorithms are not optimal. In this paper we address this problem. We formulate a new admissible heuristic for planning, use it to guide an ida search, and empirically evaluate the resulting optimal planner over a number of domains. The main contribution is the idea underlying the heuristic that yields not one but a whole family of polynomial and admissible heuristics that trade accuracy for e ciency. The formulation is general and sheds some light on the heuristics used in hsp and Graphplan, and their relation. It exploits the factored (Strips) representation of planning problems, mapping shortestpath problems in statespace into suitably dened shortestpath problems in atomspace. The formulation applies with little variation to sequential and parallel planning, and problems with di erent action costs.
Using Anytime Algorithms in Intelligent Systems
, 1996
"... Anytime algorithms give intelligent systems the capability to trade deliberation time for quality of results. This capability is essential for successful operation in domains such as signal interpretation, realtime diagnosis and repair, and mobile robot control. What characterizes these domains i ..."
Abstract

Cited by 145 (8 self)
 Add to MetaCart
Anytime algorithms give intelligent systems the capability to trade deliberation time for quality of results. This capability is essential for successful operation in domains such as signal interpretation, realtime diagnosis and repair, and mobile robot control. What characterizes these domains is that it is not feasible (computationally) or desirable (economically) to compute the optimal answer. This article surveys the main control problems that arise when a system is composed of several anytime algorithms. These problems relate to optimal management of uncertainty and precision. After a brief introduction to anytime computation, I outline a wide range of existing solutions to the metalevel control problem and describe current work that is aimed at increasing the applicability of anytime computation.
Spanning Trees and Spanners
, 1996
"... We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. For instance, one may wish to connect components of a VLSI circuit by networks of wires, in a way that uses little surface area on the chip, draws little power, and propagates signals quickly. Similar problems come up in other applications such as telecommunications, road network design, and medical imaging [1]. One network design problem, the Traveling Salesman problem, is sufficiently important to have whole books devoted to it [79]. Problems involving some form of geometric minimum or maximum spanning tree also arise in the solution of other geometric problems such as clustering [12], mesh generation [56], and robot motion planning [93]. One can vary the network design problem in many w...
An effective implementation of the linkernighan traveling salesman heuristic
 European Journal of Operational Research
, 2000
"... This report describes an implementation of the LinKernighan heuristic, one of the most successful methods for generating optimal or nearoptimal solutions for the symmetric traveling salesman problem. Computational tests show that the implementation is highly effective. It has found optimal solution ..."
Abstract

Cited by 120 (1 self)
 Add to MetaCart
This report describes an implementation of the LinKernighan heuristic, one of the most successful methods for generating optimal or nearoptimal solutions for the symmetric traveling salesman problem. Computational tests show that the implementation is highly effective. It has found optimal solutions for all solved problem instances we have been able to obtain, including a 7397city problem (the largest nontrivial problem instance solved to optimality today). Furthermore, the algorithm has improved the best known solutions for a series of largescale problems with unknown optima, among these an 85900city problem. 1.
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 91 (16 self)
 Add to MetaCart
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
Landscapes and Their Correlation Functions
, 1996
"... Fitness landscapes are an important concept in molecular evolution. Many important examples of landscapes in physics and combinatorial optimation, which are widely used as model landscapes in simulations of molecular evolution and adaptation, are "elementary", i.e., they are (up to an additive const ..."
Abstract

Cited by 89 (15 self)
 Add to MetaCart
Fitness landscapes are an important concept in molecular evolution. Many important examples of landscapes in physics and combinatorial optimation, which are widely used as model landscapes in simulations of molecular evolution and adaptation, are "elementary", i.e., they are (up to an additive constant) eigenfuctions of a graph Laplacian. It is shown that elementary landscapes are characterized by their correlation functions. The correlation functions are in turn uniquely determined by the geometry of the underlying configuration space and the nearest neighbor correlation of the elementary landscape. Two types of correlation functions are investigated here: the correlation of a time series sampled along a random walk on the landscape and the correlation function with respect to a partition of the set of all vertex pairs.
A Genetic Local Search Algorithm for Solving Symmetric and Asymmetric Traveling Salesman Problems
 In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation
, 1996
"... The combination of local search heuristics and genetic algorithms is a promising approach for finding nearoptimum solutions to the traveling salesman problem (TSP). In this paper, an approach is presented in which local search techniques are used to find local optima in a given TSP search space, and ..."
Abstract

Cited by 77 (12 self)
 Add to MetaCart
The combination of local search heuristics and genetic algorithms is a promising approach for finding nearoptimum solutions to the traveling salesman problem (TSP). In this paper, an approach is presented in which local search techniques are used to find local optima in a given TSP search space, and genetic algorithms are used to search the space of local optima in order to find the global optimum. New genetic operators for realizing the proposed approach are described, and the quality and efficiency of the solutions obtained for a set of symmetric and asymmetric TSP instances are discussed. The results indicate that it is possible to arrive at high quality solutions in reasonable time. I. Introduction In the Traveling Salesman Problem (TSP) [18], [27], a number of cities with distances between them is given and the task is to find the minimumlength closed tour that visits each city once and returns to its starting point. A symmetric TSP (STSP) is one where the distance between any...
Genetic Local Search for the TSP: New Results
 In Proceedings of the 1997 IEEE International Conference on Evolutionary Computation
, 1997
"... The combination of local search heuristics and genetic algorithms has been shown to be an effective approach for finding nearoptimum solutions to the traveling salesman problem. In this paper, previously proposed genetic local search algorithms for the symmetric and asymmetric traveling salesman pr ..."
Abstract

Cited by 74 (13 self)
 Add to MetaCart
The combination of local search heuristics and genetic algorithms has been shown to be an effective approach for finding nearoptimum solutions to the traveling salesman problem. In this paper, previously proposed genetic local search algorithms for the symmetric and asymmetric traveling salesman problem are revisited and potential improvements are identified. Since local search is the central component in which most of the computation time is spent, improving the efficiency of the local search operators is crucial for improving the overall performance of the algorithms. The modifications of the algorithms are described and the new results obtained are presented. The results indicate that the improved algorithms are able to arrive at better solutions in significantly less time. I. Introduction Consider a salesman who wants to start from his home city, visit each of a set of n cities exactly once, and then return home. Since the salesman is interested in finding the shortest possible r...