Results 1 
3 of
3
A lambda calculus for quantum computation
 SIAM Journal of Computing
"... The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propos ..."
Abstract

Cited by 49 (1 self)
 Add to MetaCart
The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propose that quantum computation, like its classical counterpart, may benefit from a version of the lambda calculus suitable for expressing and reasoning about quantum algorithms. In this paper we develop a quantum lambda calculus as an alternative model of quantum computation, which combines some of the benefits of both the quantum Turing machine and the quantum circuit models. The calculus turns out to be closely related to the linear lambda calculi used in the study of Linear Logic. We set up a computational model and an equational proof system for this calculus, and we argue that it is equivalent to the quantum Turing machine.
Quantum computation, categorical semantics and linear logic. quantph/0312174
, 2003
"... We develop a type theory and provide a denotational semantics for a simple fragment of the quantum lambda calculus, a formal language for quantum computation based on linear logic. In our semantics, variables inhabit certain Hilbert bundles, and computations are interpreted as the appropriate inner ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
We develop a type theory and provide a denotational semantics for a simple fragment of the quantum lambda calculus, a formal language for quantum computation based on linear logic. In our semantics, variables inhabit certain Hilbert bundles, and computations are interpreted as the appropriate inner product preserving maps between Hilbert bundles. These bundles and maps form a symmetric monoidal
Under consideration for publication in Math. Struct. in Comp. Science Quantum Programming Languages Survey and Bibliography
, 2006
"... The field of quantum programming languages is developing rapidly and there is a surprisingly large literature. Research in this area includes the design of programming languages for quantum computing, the application of established semantic and logical techniques to the foundations of quantum mechan ..."
Abstract
 Add to MetaCart
The field of quantum programming languages is developing rapidly and there is a surprisingly large literature. Research in this area includes the design of programming languages for quantum computing, the application of established semantic and logical techniques to the foundations of quantum mechanics, and the design of compilers for quantum programming languages. This article justifies the study of quantum programming languages, presents the basics of quantum computing, surveys the literature in quantum programming languages, and indicates directions for future research. 1.