Results 1 
4 of
4
A lambda calculus for quantum computation
 SIAM Journal of Computing
"... The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propos ..."
Abstract

Cited by 49 (1 self)
 Add to MetaCart
The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propose that quantum computation, like its classical counterpart, may benefit from a version of the lambda calculus suitable for expressing and reasoning about quantum algorithms. In this paper we develop a quantum lambda calculus as an alternative model of quantum computation, which combines some of the benefits of both the quantum Turing machine and the quantum circuit models. The calculus turns out to be closely related to the linear lambda calculi used in the study of Linear Logic. We set up a computational model and an equational proof system for this calculus, and we argue that it is equivalent to the quantum Turing machine.
Quantum computation, categorical semantics and linear logic. quantph/0312174
, 2003
"... We develop a type theory and provide a denotational semantics for a simple fragment of the quantum lambda calculus, a formal language for quantum computation based on linear logic. In our semantics, variables inhabit certain Hilbert bundles, and computations are interpreted as the appropriate inner ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
We develop a type theory and provide a denotational semantics for a simple fragment of the quantum lambda calculus, a formal language for quantum computation based on linear logic. In our semantics, variables inhabit certain Hilbert bundles, and computations are interpreted as the appropriate inner product preserving maps between Hilbert bundles. These bundles and maps form a symmetric monoidal
Quantum Entanglement Analysis based on Abstract Interpretation
, 801
"... Abstract. Entanglement is a non local property of quantum states which has no classical counterpart and plays a decisive role in quantum information theory. Several protocols, like the teleportation, are based on quantum entangled states. Moreover, any quantum algorithm which does not create entangl ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. Entanglement is a non local property of quantum states which has no classical counterpart and plays a decisive role in quantum information theory. Several protocols, like the teleportation, are based on quantum entangled states. Moreover, any quantum algorithm which does not create entanglement can be efficiently simulated on a classical computer. The exact role of the entanglement is nevertheless not well understood. Since an exact analysis of entanglement evolution induces an exponential slowdown, we consider approximative analysis based on the framework of abstract interpretation. In this paper, a concrete quantum semantics based on superoperators is associated with a simple quantum programming language. The representation of entanglement, i.e. the design of the abstract domain is a key issue. A representation of entanglement as a partition of the memory is chosen. An abstract semantics is introduced, and the soundness of the approximation is proven. 1
A Hierarchy of Quantum Semantics
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract
 Add to MetaCart
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be