Results 1  10
of
68
Predictive Models for the Breeder Genetic Algorithm  I. Continuous Parameter Optimization
 EVOLUTIONARY COMPUTATION
, 1993
"... In this paper a new genetic algorithm called the Breeder Genetic Algorithm (BGA) is introduced. The BGA is based on artificial selection similar to that used by human breeders. A predictive model for the BGA is presented which is derived from quantitative genetics. The model is used to predict t ..."
Abstract

Cited by 344 (25 self)
 Add to MetaCart
In this paper a new genetic algorithm called the Breeder Genetic Algorithm (BGA) is introduced. The BGA is based on artificial selection similar to that used by human breeders. A predictive model for the BGA is presented which is derived from quantitative genetics. The model is used to predict the behavior of the BGA for simple test functions. Different mutation schemes are compared by computing the expected progress to the solution. The numerical performance of the BGA is demonstrated on a test suite of multimodal functions. The number of function evaluations needed to locate the optimum scales only as n ln(n) where n is the number of parameters. Results up to n = 1000 are reported.
Niching Methods for Genetic Algorithms
, 1995
"... Niching methods extend genetic algorithms to domains that require the location and maintenance of multiple solutions. Such domains include classification and machine learning, multimodal function optimization, multiobjective function optimization, and simulation of complex and adaptive systems. This ..."
Abstract

Cited by 192 (1 self)
 Add to MetaCart
Niching methods extend genetic algorithms to domains that require the location and maintenance of multiple solutions. Such domains include classification and machine learning, multimodal function optimization, multiobjective function optimization, and simulation of complex and adaptive systems. This study presents a comprehensive treatment of niching methods and the related topic of population diversity. Its purpose is to analyze existing niching methods and to design improved niching methods. To achieve this purpose, it first develops a general framework for the modelling of niching methods, and then applies this framework to construct models of individual niching methods, specifically crowding and sharing methods. Using a constructed model of crowding, this study determines why crowding methods over the last two decades have not made effective niching methods. A series of tests and design modifications results in the development of a highly effective form of crowding, called determin...
On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts  Towards Memetic Algorithms
, 1989
"... Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that one could ..."
Abstract

Cited by 187 (10 self)
 Add to MetaCart
Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that one could possibly enumerate 10 9 tours per second on a computer it would thus take roughly 10 639 years of computing to establish the optimality of this tour by exhaustive enumeration." This quote shows the real difficulty of a combinatorial optimization problem. The huge number of configurations is the primary difficulty when dealing with one of these problems. The quote belongs to M.W Padberg and M. Grotschel, Chap. 9., "Polyhedral computations", from the book The Traveling Salesman Problem: A Guided tour of Combinatorial Optimization [124]. It is interesting to compare the number of configurations of realworld problems in combinatorial optimization with those large numbers arising in Cosmol...
Evolution in time and space  the parallel genetic algorithm
 FOUNDATIONS OF GENETIC ALGORITHMS
, 1991
"... The parallel genetic algorithm (PGA) uses two major modifications compared to the genetic algorithm. Firstly, selection for mating is distributed. Individuals live in a 2D world. Selection of a mate is done by each individual independently in its neighborhood. Secondly, each individual may improve ..."
Abstract

Cited by 108 (13 self)
 Add to MetaCart
The parallel genetic algorithm (PGA) uses two major modifications compared to the genetic algorithm. Firstly, selection for mating is distributed. Individuals live in a 2D world. Selection of a mate is done by each individual independently in its neighborhood. Secondly, each individual may improve its fitness during its lifetime by e.g. local hillclimbing. The PGA is totally asynchronous, running with maximal efficiency on MIMD parallel computers. The search strategy of the PGA is based on a small number of active and intelligent individuals, whereas a GA uses a large population of passive individuals. We will investigate the PGA with deceptive problems and the traveling salesman problem. We outline why and when the PGA is succesful. Abstractly, a PGA is a parallel search with information exchange between the individuals. If we represent the optimization problem as a fitness landscape in a certain configuration space, we see, that a PGA tries to jump from two local minima to a third, still better local minima, by using the crossover operator. This jump is (probabilistically) successful, if the fitness landscape has a certain correlation. We show the correlation for the traveling salesman problem by a configuration space analysis. The PGA explores implicitly the above correlation.
Hybrid Evolutionary Algorithms for Graph Coloring
, 1998
"... A recent and very promising approach for combinatorial optimization is to embed local search into the framework of evolutionary algorithms. In this paper, we present such hybrid algorithms for the graph coloring problem. These algorithms combine a new class of highly specialized crossover operators ..."
Abstract

Cited by 104 (14 self)
 Add to MetaCart
A recent and very promising approach for combinatorial optimization is to embed local search into the framework of evolutionary algorithms. In this paper, we present such hybrid algorithms for the graph coloring problem. These algorithms combine a new class of highly specialized crossover operators and a wellknown tabu search algorithm. Experiments of such a hybrid algorithm are carried out on large DIMACS Challenge benchmark graphs. Results prove very competitive with and even better than those of stateoftheart algorithms. Analysis of the behavior of the algorithm sheds light on ways to further improvement. Keywords: Graph coloring, solution recombination, tabu search, combinatorial optimization. 1 Introduction A recent and very promising approach for combinatorial optimization is to embed local search into the framework of population based evolutionary algorithms, leading to hybrid evolutionary algorithms (HEA). Such an algorithm is essentially based on two key elements: an eff...
LargeStep Markov Chains for the Traveling Salesman Problem
 Complex Systems
, 1991
"... We introduce a new class of Markov chain Monte Carlo search procedures, leading to more powerful optimization methods than simulated annealing. The main idea is to embed deterministic local search techniques into stochastic algorithms. The Monte Carlo explores only local optima, and it is able to ma ..."
Abstract

Cited by 92 (6 self)
 Add to MetaCart
We introduce a new class of Markov chain Monte Carlo search procedures, leading to more powerful optimization methods than simulated annealing. The main idea is to embed deterministic local search techniques into stochastic algorithms. The Monte Carlo explores only local optima, and it is able to make large, global changes, even at low temperatures, thus overcoming large barriers in configuration space. We test these procedures in the case of the Traveling Salesman Problem. The embedded local searches we use are 3opt and LinKernighan. The large change or step consists of a special kind of 4change followed by localopt minimization. We test this algorithm on a number of instances. The power of the method is illustrated by solving to optimality some large problems such as the LIN318, the AT&T532, and the RAT783 problems. For even larger instances with randomly distributed cities, the Markov chain procedure improves 3opt by over 1.6%, and LinKernighan by 1.3%, leading to a new best h...
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 90 (16 self)
 Add to MetaCart
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
Combining Simulated Annealing with Local Search Heuristics
, 1993
"... We introduce a metaheuristic to combine simulated annealing with local search methods for CO problems. This new class of Markov chains leads to significantly more powerful optimization methods than either simulated annealing or local search. The main idea is to embed deterministic local search tech ..."
Abstract

Cited by 80 (7 self)
 Add to MetaCart
We introduce a metaheuristic to combine simulated annealing with local search methods for CO problems. This new class of Markov chains leads to significantly more powerful optimization methods than either simulated annealing or local search. The main idea is to embed deterministic local search techniques into simulated annealing so that the chain explores only local optima. It makes large, global changes, even at low temperatures, thus overcoming large barriers in configuration space. We have tested this metaheuristic for the traveling salesman and graph partitioning problems. Tests on instances from public libraries and random ensembles quantify the power of the method. Our algorithm is able to solve large instances to optimality, improving upon state of the art local search methods very significantly. For the traveling salesman problem with randomly distributed cities in a square, the procedure improves on 3opt by 1.6%, and on LinKernighan local search by 1.3%. For the partitioni...
A Genetic Local Search Algorithm for Solving Symmetric and Asymmetric Traveling Salesman Problems
 In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation
, 1996
"... The combination of local search heuristics and genetic algorithms is a promising approach for finding nearoptimum solutions to the traveling salesman problem (TSP). In this paper, an approach is presented in which local search techniques are used to find local optima in a given TSP search space, and ..."
Abstract

Cited by 76 (12 self)
 Add to MetaCart
The combination of local search heuristics and genetic algorithms is a promising approach for finding nearoptimum solutions to the traveling salesman problem (TSP). In this paper, an approach is presented in which local search techniques are used to find local optima in a given TSP search space, and genetic algorithms are used to search the space of local optima in order to find the global optimum. New genetic operators for realizing the proposed approach are described, and the quality and efficiency of the solutions obtained for a set of symmetric and asymmetric TSP instances are discussed. The results indicate that it is possible to arrive at high quality solutions in reasonable time. I. Introduction In the Traveling Salesman Problem (TSP) [18], [27], a number of cities with distances between them is given and the task is to find the minimumlength closed tour that visits each city once and returns to its starting point. A symmetric TSP (STSP) is one where the distance between any...