Results 1 
6 of
6
The Stone gamut: A coordinatization of mathematics
 In Logic in Computer Science
, 1995
"... We give a uniform representation of the objects of mathematical practice as Chu spaces, forming a concrete selfdual bicomplete closed category and hence a constructive model of linear logic. This representation distributes mathematics over a twodimensional space we call the Stone gamut. The Stone ..."
Abstract

Cited by 30 (13 self)
 Add to MetaCart
We give a uniform representation of the objects of mathematical practice as Chu spaces, forming a concrete selfdual bicomplete closed category and hence a constructive model of linear logic. This representation distributes mathematics over a twodimensional space we call the Stone gamut. The Stone gamut is coordinatized horizontally by coherence, ranging from −1 for sets to 1 for complete atomic Boolean algebras (CABA’s), and vertically by complexity of language. Complexity 0 contains only sets, CABA’s, and the inconsistent empty set. Complexity 1 admits noninteracting setCABA pairs. The entire Stone duality menagerie of partial distributive lattices enters at complexity 2. Groups, rings, fields, graphs, and categories have all entered by level 16, and every category of relational structures and their homomorphisms eventually appears. The key is the identification of continuous functions and homomorphisms, which puts StonePontrjagin duality on a uniform basis by merging algebra and topology into a simple common framework. 1 Mathematics from matrices We organize much of mathematics into a single category Chu of Chu spaces, or games as Lafont and Streicher have called them [LS91]. A Chu space is just a matrix that we shall denote =, but unlike the matrices of linear algebra, which serve as representations of linear transformations, Chu spaces serve as representations of the objects of mathematics, and their essence resides in how they transform. This organization permits a general twodimensional classification of mathematical objects that we call the Stone gamut 1, distributed horizontally by ∗This work was supported by ONR under grant number N0001492J1974. 1 “Spectrum, ” the obvious candidate for this appliction, already has a standard meaning in Stone duality, namely the representation of the dual space of a lattice by its prime ideals. “A
Chu spaces and their interpretation as concurrent objects
, 2005
"... A Chu space is a binary relation =  from a set A to an antiset X defined as a set which transforms via converse functions. Chu spaces admit a great many interpretations by virtue of realizing all small concrete categories and most large ones arising in mathematical and computational practice. Of pa ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A Chu space is a binary relation =  from a set A to an antiset X defined as a set which transforms via converse functions. Chu spaces admit a great many interpretations by virtue of realizing all small concrete categories and most large ones arising in mathematical and computational practice. Of particular interest for computer science is their interpretation as computational processes, which takes A to be a schedule of events distributed in time, X to be an automaton of states forming an information system in the sense of Scott, and the pairs (a, x) in the =  relation to be the individual transcriptions of the making of history. The traditional homogeneous binary relations of transition on X and precedence on A are recovered as respectively the right and left residuals of the heterogeneous binary relation =  with itself. The natural algebra of Chu spaces is that of linear logic, made a process algebra by the process interpretation.
Time and Information in Sequential and Concurrent Computation
 In Proc. Theory and Practice of Parallel Programming
, 1994
"... Time can be understood as dual to information in extant models of both sequential and concurrent computation. The basis for this duality is phase space, coordinatized by time and information, whose axes are oriented respectively horizontally and vertically. We fit various basic phenomena of computat ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Time can be understood as dual to information in extant models of both sequential and concurrent computation. The basis for this duality is phase space, coordinatized by time and information, whose axes are oriented respectively horizontally and vertically. We fit various basic phenomena of computation, and of behavior in general, to the phase space perspective. The extant twodimensional logics of sequential behavior, the van Glabbeek map of branching time and true concurrency, eventstate duality and scheduleautomaton duality, and Chu spaces, all fit the phase space perspective well, in every case confirming our choice of orientation. 1 Introduction Our recent research has emphasized a basic duality between time and information in concurrent computation. In this paper we return to our earlier work on sequential computation and point out that a very similar duality is present there also. Our main goal here will be to compare concurrent and sequential computation in terms of this dua...
Rational mechanics and natural mathematics
 In TAPSOFT'95
, 1995
"... Chu spaces have found applications in computer science, mathematics, and physics. They enjoy a useful categorical duality analogous to that of lattice theory and projective geometry. As natural mathematics Chu spaces borrow ideas from the natural sciences, particularly physics, while as rational mec ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Chu spaces have found applications in computer science, mathematics, and physics. They enjoy a useful categorical duality analogous to that of lattice theory and projective geometry. As natural mathematics Chu spaces borrow ideas from the natural sciences, particularly physics, while as rational mechanics they cast Hamiltonian mechanics in terms of the interaction of body and mind. This paper addresses the chief stumbling block for Descartes ’ 17thcentury philosophy of mindbody dualism, how can the fundamentally dissimilar mental and physical planes causally interact with each other? We apply Cartesian logic to reject not only divine intervention, preordained synchronization, and the eventual mass retreat to monism, but also an assumption Descartes himself somehow neglected to reject, that causal interaction within these planes is an easier problem than between. We use Chu spaces and residuation to derive all causal interaction, both between and within the two planes, from a uniform and algebraically rich theory of betweenplane interaction alone. Lifting the twovalued Boolean logic of binary relations to the complexvalued fuzzy logic of quantum mechanics transforms residuation into a natural generalization of the inner product operation of a Hilbert space and demonstrates that this account of causal interaction is of essentially the same form as the HeisenbergSchrödinger quantummechanical solution to analogous problems of causal interaction in physics. 1 Cartesian Dualism The Chu construction [Bar79] strikes us as extraordinarily useful, more so with every passing month. Elsewhere we have described the application of Chu spaces to process algebra [GP93], metamathematics [Pra93, Pra94a], and physics [Pra94b]. Here we make a first attempt at applying them to philosophy. It might seem that traditional philosophical questions would be beyond the scope of TAPSOFT. Bear in mind however that Boolean logic as the basis for
Model Checking for Open Systems: A Compositional Approach to Software Verification
, 2001
"... x CHAPTERS 1 ..."