Results 1 
2 of
2
Spreads in strongly regular graphs
 Designs, Codes and Cryptography 8
, 1996
"... Dedicated to Hanfried Lenz on the occasion of his 80th birthday Abstract. A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's bound (also called Hoffman's bound). Such spreads give rise to colorings meeting Hoffman's lower bound for ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
(Show Context)
Dedicated to Hanfried Lenz on the occasion of his 80th birthday Abstract. A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's bound (also called Hoffman's bound). Such spreads give rise to colorings meeting Hoffman's lower bound for the chromatic number and to certain imprimitive threeclass association schemes. These correspondences l ad to conditions for existence. Most examples come from spreads and fans in (partial) geometries. We give other examples, including a spread in the McLaughlin graph. For strongly regular graphs related to regular twographs, spreads give lower bounds for the number of nonisomorphic strongly regular graphs in the switching class of the regular twograph.
The Complete Catalog of 3Regular, Diameter3 Planar Graphs
, 1996
"... The largest known 3regular planar graph with diameter 3 has 12 vertices. We consider the problem of determining whether there is a larger graph with these properties. We find all nonisomorphic 3regular, diameter3 planar graphs, thus solving the problem completely. There are none with more than 12 ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The largest known 3regular planar graph with diameter 3 has 12 vertices. We consider the problem of determining whether there is a larger graph with these properties. We find all nonisomorphic 3regular, diameter3 planar graphs, thus solving the problem completely. There are none with more than 12 vertices. An Upper Bound A graph with maximum degree \Delta and diameter D is called a (\Delta; D)graph. It is easily seen ([9], p. 171) that the order of a (\Delta,D)graph is bounded above by the Moore bound, which is given by 1+ \Delta + \Delta (\Delta \Gamma 1) + \Delta \Delta \Delta + \Delta(\Delta \Gamma 1) D\Gamma1 = 8 ? ! ? : \Delta(\Delta \Gamma 1) D \Gamma 2 \Delta \Gamma 2 if \Delta 6= 2; 2D + 1 if \Delta = 2: Figure 1: The regular (3,3)graph on 20 vertices (it is unique up to isomorphism) . For D 2 and \Delta 3, this bound is attained only if D = 2 and \Delta = 3; 7, and (perhaps) 57 [3, 14, 23]. Now, except for the case of C 4 (the cycle on four vertices), the num...