Results 1  10
of
148
Coverage Control for Mobile Sensing Networks
, 2002
"... This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functio ..."
Abstract

Cited by 349 (50 self)
 Add to MetaCart
This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closedloop behavior is adaptive, distributed, asynchronous, and verifiably correct.
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 180 (8 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Movementassisted sensor deployment
, 2006
"... Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile senso ..."
Abstract

Cited by 154 (8 self)
 Add to MetaCart
Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile sensors to get high coverage. Based on Voronoi diagrams, we design two sets of distributed protocols for controlling the movement of sensors, one favoring communication and one favoring movement. In each set of protocols, we use Voronoi diagrams to detect coverage holes and use one of three algorithms to calculate the target locations of sensors if holes exist. Simulation results show the effectiveness of our protocols and give insight on choosing protocols and calculation algorithms under different application requirements and working conditions.
Coverage in Wireless Adhoc Sensor Networks
, 2002
"... Sensor networks pose a number of challenging conceptual and optimization problems such as location, deployment, and tracking [1]. One of the fundamental problems in sensor networks is the calculation of the coverage. In [1], it is assumed that the sensor has the uniform sensing ability. In this pape ..."
Abstract

Cited by 113 (9 self)
 Add to MetaCart
Sensor networks pose a number of challenging conceptual and optimization problems such as location, deployment, and tracking [1]. One of the fundamental problems in sensor networks is the calculation of the coverage. In [1], it is assumed that the sensor has the uniform sensing ability. In this paper, we give efficient distributed algorithms to optimally solve the bestcoverage problem raised in [1]. Here, we consider the sensing model: the sensing ability diminishes as the distance increases. As energy conservation is a major concern in wireless (or sensor) networks, we also consider how to find an optimum bestcoverage path with the least energy consumption. We also consider how to find an optimum bestcoveragepath that travels a small distance. In addition, we justify the correctness of the method proposed in [1] that uses the Delaunay triangulation to solve the best coverage problem. Moreover, we show that the search space of the best coverage problem can be confined to the relative neighborhood graph, which can be constructed locally.
Efficient Exact Arithmetic for Computational Geometry
 In Proc. 9th Annu. ACM Sympos. Comput. Geom
, 1993
"... We experiment with exact integer arithmetic to implement primitives for geometric algorithms. Naive use of exact arithmeticeither modular or multiprecision integerincreases execution time dramatically over the use of floatingpoint arithmetic. By combining tuned multiprecision integer arithmet ..."
Abstract

Cited by 96 (3 self)
 Add to MetaCart
We experiment with exact integer arithmetic to implement primitives for geometric algorithms. Naive use of exact arithmeticeither modular or multiprecision integerincreases execution time dramatically over the use of floatingpoint arithmetic. By combining tuned multiprecision integer arithmetic and a floatingpoint filter based on interval analysis, we can obtain the effect of exact integer arithmetic at a cost close to that of floatingpoint arithmetic. We describe an experimental expression compiler that conveniently packages our techniques. 1 Introduction Geometric algorithms are usually described using exact arithmetic on real numbers (the "real RAM" model). Since no computer provides exact real arithmetic, programmers implementing geometric algorithms must find some substitution. Floatingpoint arithmetic is a common and convenient substitution, but there are no simple techniques that guarantee the reliability of the resulting program[8]. A few algorithms have been analyz...
Geometric Models for Quasicrystals I. Delone Sets of Finite Type
, 1998
"... This paper studies three classes of discrete sets X in R n which have a weak translational order imposed by increasingly strong restrictions on their sets of interpoint vectors X \Gamma X . A finitely generated Delone set is one such that the abelian group [X \Gamma X ] generated by X \Gamma X i ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
This paper studies three classes of discrete sets X in R n which have a weak translational order imposed by increasingly strong restrictions on their sets of interpoint vectors X \Gamma X . A finitely generated Delone set is one such that the abelian group [X \Gamma X ] generated by X \Gamma X is finitely generated, so that [X \Gamma X ] is a lattice or a quasilattice. For such sets the abelian group [X ] is finitely generated, and by choosing a basis of [X ] one obtains a homomorphism OE : [X ]!Z s . A Delone set of finite type is a Delone set X such that X \Gamma X is a discrete closed set. A Meyer set is a Delone set X such that X \Gamma X is a Delone set. Delone sets of finite type form a natural class for modelling quasicrystalline structures, because the property of being a Delone set of finite type is determined by "local rules." That is, a Delone set X is of finite type if and only if it has a 20 finite number of neighborhoods of radius 2R, up to translation, where R is ...
Interval arithmetic yields efficient dynamic filters for computational geometry
 Disc. Appl. Maths
"... We discuss floatingpoint filters as a means of restricting the precision needed for arithmetic operations while still computing the exact result. We show that interval techniques can be used to speed up the exact evaluation of geometric predicates and describe an efficient implementation of interva ..."
Abstract

Cited by 51 (12 self)
 Add to MetaCart
We discuss floatingpoint filters as a means of restricting the precision needed for arithmetic operations while still computing the exact result. We show that interval techniques can be used to speed up the exact evaluation of geometric predicates and describe an efficient implementation of interval arithmetic that is strongly influenced by the rounding modes of the widely used IEEE 754 standard. Using this approach we engineer an efficient floatingpoint filter for the computation of the sign of a determinant that works for arbitrary dimensions. We validate our approach experimentally, comparing it with other static, dynamic and semistatic filters. 1
Mesh Generation
 Handbook of Computational Geometry. Elsevier Science
, 2000
"... this article, we emphasize practical issues; an earlier survey by Bern and Eppstein [24] emphasized theoretical results. Although there is inevitably some overlap between these two surveys, we intend them to be complementary. ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
this article, we emphasize practical issues; an earlier survey by Bern and Eppstein [24] emphasized theoretical results. Although there is inevitably some overlap between these two surveys, we intend them to be complementary.
SMART: A ScanBased MovementAssisted Sensor Deployment Method in Wireless Sensor Networks
 In Proc. of IEEE INFOCOM
, 2005
"... Abstract—The efficiency of sensor networks depends on the coverage of the monitoring area. Although, in general, a sufficient number of sensors are used to ensure a certain degree of redundancy in coverage, a good sensor deployment is still necessary to balance the workload of sensors. In a sensor n ..."
Abstract

Cited by 49 (1 self)
 Add to MetaCart
Abstract—The efficiency of sensor networks depends on the coverage of the monitoring area. Although, in general, a sufficient number of sensors are used to ensure a certain degree of redundancy in coverage, a good sensor deployment is still necessary to balance the workload of sensors. In a sensor network with locomotion facilities, sensors can move around to selfdeploy. The movementassisted sensor deployment deals with moving sensors from an initial unbalanced state to a balanced state. Therefore, various optimization problems can be defined to minimize different parameters, including total moving distance, total number of moves, communication/computation cost, and convergence rate. In this paper, we first propose a Hungarianalgorithmbased optimal solution, which is centralized. Then, a localized Scanbased MovementAssisted sensoR deploymenT method (SMART) and its several variations that use scan and dimension exchange to achieve a balanced state are proposed. An extended SMART is developed to address a unique problem called communication holes in sensor networks. Extensive simulations have been done to verify the effectiveness of the proposed scheme.
A Bidding Protocol for Deploying Mobile Sensors
 in Proceedings of IEEE ICNP
, 2003
"... Adequate coverage is very important for sensor networks to fulfill sensing tasks. In many working environments, it is necessary to make use of mobile sensors to provide the required coverage. We propose to deploy a mix of mobile and static sensors to achieve a balance between sensor coverage and sen ..."
Abstract

Cited by 43 (6 self)
 Add to MetaCart
Adequate coverage is very important for sensor networks to fulfill sensing tasks. In many working environments, it is necessary to make use of mobile sensors to provide the required coverage. We propose to deploy a mix of mobile and static sensors to achieve a balance between sensor coverage and sensor cost. We design two bidding protocols to guide the movement of mobile sensors. In the protocols, static sensors detect coverage holes locally by using Voronoi diagrams, and bid mobile sensors to move. Mobile sensors accept the highest bids and heal the largest holes. Simulation results show that our protocols achieve suitable tradeoff between coverage and sensor cost. I.