Results 1  10
of
138
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 560 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
Voronoi Diagrams and Delaunay Triangulations
 Computing in Euclidean Geometry
, 1992
"... The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi ..."
Abstract

Cited by 198 (3 self)
 Add to MetaCart
The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi diagrams. 1 Introduction Let S be a set of n points in ddimensional euclidean space E d . The points of S are called sites. The Voronoi diagram of S splits E d into regions with one region for each site, so that the points in the region for site s2S are closer to s than to any other site in S. The Delaunay triangulation of S is the unique triangulation of S so that there are no elements of S inside the circumsphere of any triangle. Here `triangulation' is extended from the planar usage to arbitrary dimension: a triangulation decomposes the convex hull of S into simplices using elements of S as vertices. The existence and uniqueness of the Delaunay triangulation are perhaps not obvio...
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 180 (8 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Approximating Polyhedra with Spheres for TimeCritical Collision Detection
 ACM Transactions on Graphics
, 1996
"... This paper presents a method for approximating polyhedral objects to support a timecritical collisiondetection algorithm. The approximations are hierarchies of spheres, and they allow the timecritical algorithm to progressively refine the accuracy of its detection, stopping as needed to maintain ..."
Abstract

Cited by 178 (1 self)
 Add to MetaCart
This paper presents a method for approximating polyhedral objects to support a timecritical collisiondetection algorithm. The approximations are hierarchies of spheres, and they allow the timecritical algorithm to progressively refine the accuracy of its detection, stopping as needed to maintain the realtime performance essential for interactive applications. The key to this approach is a preprocess that automatically builds tightly fitting hierarchies for rigid and articulated objects. The preprocess uses medialaxis surfaces, which are skeletal representations of objects. These skeletons guide an optimization technique that gives the hierarchies accuracy properties appropriate for collision detection. In a sample application, hierarchies built this way allow the timecritical collisiondetection algorithm to have acceptable accuracy, improving significantly on that possible with hierarchies built by previous techniques. The performance of the timecritical algorithm in this appli...
Collision Detection for Interactive Graphics Applications
 IEEE Transactions on Visualization and Computer Graphics
, 1995
"... Solid objects in the real world do not pass through each other when they collide. Enforcing this property of "solidness" is important in many interactive graphics applications; for example, solidness makes virtual reality more believable, and solidness is essential for the correctness of vehicle sim ..."
Abstract

Cited by 173 (5 self)
 Add to MetaCart
Solid objects in the real world do not pass through each other when they collide. Enforcing this property of "solidness" is important in many interactive graphics applications; for example, solidness makes virtual reality more believable, and solidness is essential for the correctness of vehicle simulators. These applications use a collisiondetection algorithm to enforce the solidness of objects. Unfortunately, previous collisiondetection algorithms do not adequately address the needs of interactive applications. To work in these applications, a collisiondetection algorithm must run at realtime rates, even when many objects can collide, and it must tolerate objects whose motion is specified "on the fly" by a user. This dissertation describes a new collisiondetection algorithm that meets these criteria through approximation and graceful degradation, elements of timecritical computing. The algorithm is not only fast but also interruptible, allowing an application to trade accuracy ...
Geometric structures for threedimensional shape representation
 ACM Trans. Graph
, 1984
"... Different geometric structures are investigated in the context of discrete surface representation. It is shown that minimal representations (i.e., polyhedra) can be provided by a surfacebased method using nearest neighbors structures or by a volumebased method using the Delaunay triangulation. Bot ..."
Abstract

Cited by 166 (3 self)
 Add to MetaCart
Different geometric structures are investigated in the context of discrete surface representation. It is shown that minimal representations (i.e., polyhedra) can be provided by a surfacebased method using nearest neighbors structures or by a volumebased method using the Delaunay triangulation. Both approaches are compared with respect to various criteria, such as space requirements, computation time, constraints on the distribution of the points, facilities for further calculations, and agreement with the actual shape of the object.
Tetrahedral Mesh Generation by Delaunay Refinement
 Proc. 14th Annu. ACM Sympos. Comput. Geom
, 1998
"... Given a complex of vertices, constraining segments, and planar straightline constraining facets in E 3 , with no input angle less than 90 ffi , an algorithm presented herein can generate a conforming mesh of Delaunay tetrahedra whose circumradiustoshortest edge ratios are no greater than two ..."
Abstract

Cited by 115 (7 self)
 Add to MetaCart
Given a complex of vertices, constraining segments, and planar straightline constraining facets in E 3 , with no input angle less than 90 ffi , an algorithm presented herein can generate a conforming mesh of Delaunay tetrahedra whose circumradiustoshortest edge ratios are no greater than two. The sizes of the tetrahedra can provably grade from small to large over a relatively short distance. An implementation demonstrates that the algorithm generates excellent meshes, generally surpassing the theoretical bounds, and is effective in eliminating tetrahedra with small or large dihedral angles, although they are not all covered by the theoretical guarantee. 1 Introduction Meshes of triangles or tetrahedra have many applications, including interpolation, rendering, and numerical methods such as the finite element method. Most such applications demand more than just a triangulation of the object or domain being rendered or simulated. To ensure accurate results, the triangles or tetr...
Delaunay Refinement Algorithms for Triangular Mesh Generation
 Computational Geometry: Theory and Applications
, 2001
"... Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of tria ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles.
The Farthest Point Strategy for Progressive Image Sampling
 IEEE Trans. on Image Processing
, 1997
"... Abstract — A new method of farthest point strategy (FPS) for progressive image acquisition—an acquisition process that enables an approximation of the whole image at each sampling stage—is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient me ..."
Abstract

Cited by 61 (1 self)
 Add to MetaCart
Abstract — A new method of farthest point strategy (FPS) for progressive image acquisition—an acquisition process that enables an approximation of the whole image at each sampling stage—is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient means for sparse image sampling and display. In contrast to previously presented stochastic approaches, the FPS guarantees the uniformity in a deterministic minmax sense. Within this uniformity criterion, the sampling points are irregularly spaced, exhibiting antialiasing properties comparable to those characteristic of the best available method (Poisson disk). A straightforward modification of the FPS yields an imagedependent adaptive sampling scheme. An efficient O(N log N) algorithm for both versions is introduced, and several applications of the FPS are discussed. Index Terms—Antialiasing, progressive sampling, progressive transmission. I.