Results 1  10
of
26
HiLog: A foundation for higherorder logic programming
 JOURNAL OF LOGIC PROGRAMMING
, 1993
"... We describe a novel logic, called HiLog, and show that it provides a more suitable basis for logic programming than does traditional predicate logic. HiLog has a higherorder syntax and allows arbitrary terms to appear in places where predicates, functions and atomic formulas occur in predicate calc ..."
Abstract

Cited by 213 (40 self)
 Add to MetaCart
We describe a novel logic, called HiLog, and show that it provides a more suitable basis for logic programming than does traditional predicate logic. HiLog has a higherorder syntax and allows arbitrary terms to appear in places where predicates, functions and atomic formulas occur in predicate calculus. But its semantics is firstorder and admits a sound and complete proof procedure. Applications of HiLog are discussed, including DCG grammars, higherorder and modular logic programming, and deductive databases.
Completion Without Failure
, 1989
"... We present an "unfailing" extension of the standard KnuthBendix completion procedure that is guaranteed to produce a desired canonical system, provided certain conditions are met. Weprove that this unfailing completion method is refutationally complete for theorem proving in equational theories. The ..."
Abstract

Cited by 122 (19 self)
 Add to MetaCart
We present an "unfailing" extension of the standard KnuthBendix completion procedure that is guaranteed to produce a desired canonical system, provided certain conditions are met. Weprove that this unfailing completion method is refutationally complete for theorem proving in equational theories. The method can also be applied to Horn clauses with equality, in which case it corresponds to positive unit resolution plus oriented paramodulation, with unrestricted simplification.
Theorem Proving Modulo
 Journal of Automated Reasoning
"... Abstract. Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of much wider interest because it permits to separate computations and deductions in a clean way. The first ..."
Abstract

Cited by 75 (14 self)
 Add to MetaCart
Abstract. Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of much wider interest because it permits to separate computations and deductions in a clean way. The first contribution of this paper is to define a sequent calculus modulo that gives a proof theoretic account of the combination of computations and deductions. The congruence on propositions is handled via rewrite rules and equational axioms. Rewrite rules apply to terms and also directly to atomic propositions. The second contribution is to give a complete proof search method, called Extended Narrowing and Resolution (ENAR), for theorem proving modulo such congruences. The completeness of this method is proved with respect to provability in sequent calculus modulo. An important application is that higherorder logic can be presented as a theory modulo. Applying the Extended Narrowing and Resolution method to this presentation of higherorder logic subsumes full higherorder resolution.
SPASS FLOTTER Version 0.42
"... t represents the sort restrictions on the variables. There are two extra inference rules which transform the sort constraint into solved form: Sort resolution and empty sort. These rules 1 The name is the result of a lunch break, FLOTTER means "faster", in German. 2 Synergetic Prover Augmenting ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
t represents the sort restrictions on the variables. There are two extra inference rules which transform the sort constraint into solved form: Sort resolution and empty sort. These rules 1 The name is the result of a lunch break, FLOTTER means "faster", in German. 2 Synergetic Prover Augmenting Superposition with Sorts, SPASS means "fun", in German. implement a specific strategy of the sorted unification algorithm [15] on the sort constraint literals. In addition to these inference rules, SPASS includes a splitting rule. The splitting rule is a variant of the usual firule of tableau. If SPASS splits a clause into two different cases, the two parts will not share variables, i.e. these parts can independently be refuted. For SPASS we implemented powerful reduction rules: tautology deletion, subsumption, condensing, an efficient variant of contextual rewriting,
On evaluating decision procedures for modal logic
, 1997
"... {hustadt, schmidt} topisb.mpg.de This paper investigates the evaluation method of decision procedures for multimodal logic proposed by Giunchiglia and Sebastiani as an adaptation from the evaluation method of Mitchell et al of decision procedures for propositional logic. We compare three different ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
{hustadt, schmidt} topisb.mpg.de This paper investigates the evaluation method of decision procedures for multimodal logic proposed by Giunchiglia and Sebastiani as an adaptation from the evaluation method of Mitchell et al of decision procedures for propositional logic. We compare three different theorem proving approaches, namely the DavisPutnambased procedure KSAT, the tableauxbased system KTUS and a translation approach combined with firstorder resolution. Our results do not support the claims of Giunchiglia and Sebastiani concerning the computational superiority of KSAT over KRIS, and an easyhardeasy pattern for randomly generated modal formulae. 1
Equational Inference, Canonical Proofs, And Proof Orderings
 Journal of the ACM
, 1992
"... We describe the application of proof orderingsa technique for reasoning about inference systemsto various rewritebased theoremproving methods, including re#nements of the standard KnuthBendix completion procedure based on critical pair criteria; Huet's procedure for rewriting modulo a congr ..."
Abstract

Cited by 30 (11 self)
 Add to MetaCart
We describe the application of proof orderingsa technique for reasoning about inference systemsto various rewritebased theoremproving methods, including re#nements of the standard KnuthBendix completion procedure based on critical pair criteria; Huet's procedure for rewriting modulo a congruence; ordered completion #a refutationally complete extension of standard completion#; and a proof by consistency procedure for proving inductive theorems. # This is a substantially revised version of the paper, #Orderings for equational proofs," coauthored with J. Hsiang and presented at the Symp. on Logic in Computer Science #Boston, Massachusetts, June 1986#. It includes material from the paper #Proof by consistency in equational theories," by the #rst author, presented at the ThirdAnnual Symp. on Logic in Computer Science #Edinburgh, Scotland, July 1988#. This researchwas supported in part by the National Science Foundation under grants CCR8901322, CCR9007195, and CCR9024271. 1 ...
Inductive synthesis of equational programs
 In Eighth National Conf. on Arti cial Intelligence
, 1990
"... An equational approach to the synthesis of functional and logic program is taken. In this context, the synthesis task involves nding executable equations such that the given speci cation holds in their standard model. Hence, to synthesize such programs, induction is necessary.We formulate procedures ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
An equational approach to the synthesis of functional and logic program is taken. In this context, the synthesis task involves nding executable equations such that the given speci cation holds in their standard model. Hence, to synthesize such programs, induction is necessary.We formulate procedures for inductiveproof,aswell as for program synthesis, using the framework of \ordered rewriting". We also propose heuristics for generalizing from a sequence of equational consequences. These heuristics handle cases where the deductive process alone is inadequate for coming up with a program. 1.