Results 1  10
of
23
Constructive points of Powerlocales
 Math. Proc. Cambridge Philos. Soc
, 1995
"... Results of Bunge and Funk and of Johnstone, providing constructively sound descriptions of the global points of the lower and upper powerlocales, are extended here to describe the generalized points and proved in a way that displays in a symmetric fashion two complementary treatments of frames: as s ..."
Abstract

Cited by 21 (10 self)
 Add to MetaCart
(Show Context)
Results of Bunge and Funk and of Johnstone, providing constructively sound descriptions of the global points of the lower and upper powerlocales, are extended here to describe the generalized points and proved in a way that displays in a symmetric fashion two complementary treatments of frames: as suplattices and as preframes. We then also describe the points of the Vietoris powerlocale. In each of two special cases, an exponential $ D ($ being the Sierpinsky locale) is shown to be homeomorphic to a powerlocale: to the lower powerlocale when D is discrete, and to the upper powerlocale when D is compact regular. 1
Topical Categories of Domains
, 1997
"... this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2 ..."
Abstract

Cited by 19 (18 self)
 Add to MetaCart
(Show Context)
this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2
Formal Topology and Constructive Mathematics: the Gelfand and StoneYosida Representation Theorems
 Journal of Universal Computer Science
, 2005
"... Abstract. We present a constructive proof of the StoneYosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for falgebras. In turn, this theorem implies the Gelfand representation theorem for C*alge ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
(Show Context)
Abstract. We present a constructive proof of the StoneYosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for falgebras. In turn, this theorem implies the Gelfand representation theorem for C*algebras of operators on Hilbert spaces as formulated by Bishop and Bridges. Our proof is shorter, clearer, and we avoid the use of approximate eigenvalues.
A lambda calculus for real analysis
, 2005
"... Abstract Stone Duality is a revolutionary theory that works directly with computable continuous functions, without using set theory, infinitary lattice theory or a prior theory of discrete computation. Every expression in the calculus denotes both a continuous function and a program, but the reasoni ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Abstract Stone Duality is a revolutionary theory that works directly with computable continuous functions, without using set theory, infinitary lattice theory or a prior theory of discrete computation. Every expression in the calculus denotes both a continuous function and a program, but the reasoning looks remarkably like a sanitised form of that in classical topology. This paper is an introduction to ASD for the general mathematician, and applies it to elementary real analysis. It culminates in the Intermediate Value Theorem, i.e. the solution of equations fx = 0 for continuous f: R → R. As is well known from both numerical and constructive considerations, the equation cannot be solved if f “hovers ” near 0, whilst tangential solutions will never be found. In ASD, both of these failures and the general method of finding solutions of the equation when they exist are explained by the new concept of “overtness”. The zeroes are captured, not as a set, but by highertype operators � and ♦ that remain (Scott) continuous across singularities of a parametric equation. Expressing topology in terms of continuous functions rather than sets of points leads to
A Comparison of Two ToposTheoretic Approaches to quantum theory,” arXiv:1010.2031 [mathph
"... iv ..."
(Show Context)
The Dedekind reals in abstract Stone duality
 Mathematical Structures in Computer Science
, 2008
"... Abstract Stone Duality (ASD) is a direct axiomatisation of general topology, in contrast to the traditional and all other contemporary approaches, which rely on a prior notion of discrete set, type or object of a topos. ASD reconciles mathematical and computational viewpoints, providing an inherentl ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
Abstract Stone Duality (ASD) is a direct axiomatisation of general topology, in contrast to the traditional and all other contemporary approaches, which rely on a prior notion of discrete set, type or object of a topos. ASD reconciles mathematical and computational viewpoints, providing an inherently computable calculus that does not sacrifice key properties of real analysis such as compactness of the closed interval. Previous theories of recursive analysis failed to do this because they were based on points; ASD succeeds because, like locale theory and formal topology, it is founded on the algebra of open subspaces. ASD is presented as a lambdacalculus, of which we provide a selfcontained summary, as the foundational background has been investigated in earlier work. The core of the paper constructs the real line using twosided Dedekind cuts. We show that the closed interval is compact and overt, where these concepts are defined using quantifiers. Further topics, such as the Intermediate Value Theorem, are presented in a separate paper that builds on this one. The interval domain plays an important foundational role. However, we see intervals as generalised Dedekind cuts, which underly the construction of the real line, not as sets or pairs of real numbers. We make a thorough study of arithmetic, in which our operations are more complicated than Moore’s, because we work constructively, and we also consider backtofront (Kaucher) intervals. Finally, we compare ASD with other systems of constructive and computable topology and analysis.
Computably based locally compact spaces
, 2003
"... ASD (Abstract Stone Duality) is a reaxiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambdacalculus. In this paper, this is shown to be equivalen ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
(Show Context)
ASD (Abstract Stone Duality) is a reaxiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambdacalculus. In this paper, this is shown to be equivalent to a notion of computable basis for locally compact sober spaces or locales, involving a family of open subspaces and accompanying family of compact ones. This generalises Smyth’s effectively given domains and Jung’s Strong proximity lattices. Part of the data for a basis is the inclusion relation of compact subspaces within open ones, which is formulated in locale theory as the waybelow relation on a continuous lattice. The finitary properties of this relation are characterised here, including the Wilker condition for the cover of a compact space by two open ones. The real line is used as a running example, being closely related to Scott’s domain of intervals. ASD does not use the category of sets, but the full subcategory of overt discrete objects plays this role; it is an arithmetic universe (pretopos with lists). In particular, we use this subcategory to translate computable bases for classical spaces into objects in the ASD calculus.
Geometric and higher order logic in terms of abstract Stone duality
 THEORY AND APPLICATIONS OF CATEGORIES
, 2000
"... The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this equation implies that Σ classifies some class of monos, and the Frobenius law ∃x.(φ(x) ∧ ψ) =(∃x.φ(x)) ∧ ψ) for the existential quantifier. In topology, the lattice duals of these equations also hold, and are related to the Phoa principle in synthetic domain theory. The natural definitions of discrete and Hausdorff spaces correspond to equality and inequality, whilst the quantifiers considered as adjoints characterise open (or, as we call them, overt) and compact spaces. Our treatment of overt discrete spaces and open maps is precisely dual to that of compact Hausdorff spaces and proper maps. The category of overt discrete spaces forms a pretopos and the paper concludes with a converse of Paré’s theorem (that the contravariant powerset functor is monadic) that characterises elementary toposes by means of the monadic and Euclidean properties together with all quantifiers, making no reference to subsets.
Intuitionistic quantum logic of an nlevel system
, 2009
"... A decade ago, Isham and Butterfield proposed a topostheoretic approach to quantum mechanics, which meanwhile has been extended by Döring and Isham so as to provide a new mathematical foundation for all of physics. Last year, three of the present authors redeveloped and refined these ideas by combin ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
A decade ago, Isham and Butterfield proposed a topostheoretic approach to quantum mechanics, which meanwhile has been extended by Döring and Isham so as to provide a new mathematical foundation for all of physics. Last year, three of the present authors redeveloped and refined these ideas by combining the C*algebraic approach to quantum theory with the socalled internal language of topos theory (see arXiv:0709.4364). The goal of the present paper is to illustrate our abstract setup through the concrete example of the C*algebra Mn(C) of complex n × n matrices. This leads to an explicit expression for the pointfree quantum phase space Σn and the associated logical structure and Gelfand transform of an nlevel system. We also determine the pertinent nonprobabilisitic stateproposition pairing (or valuation) and give a very natural topostheoretic reformulation of the Kochen–Specker Theorem. In our approach, the nondistributive lattice P(Mn(C)) of projections in Mn(C) (which forms the basis of the traditional quantum logic of Birkhoff and von Neumann) is replaced by a specific distributive lattice O(Σn) of functions from the poset C(Mn(C))
Compactness in locales and in formal topology
 ANNALS OF PURE AND APPLIED LOGIC 137 (2006), PP. 413–438
, 2006
"... If a locale is presented by a “flat site”, it is shown how its frame can be presented by generators and relations as a dcpo. A necessary and sufficient condition is derived for compactness of the locale (and also for its openness). Although its derivation uses impredicative constructions, it is also ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
If a locale is presented by a “flat site”, it is shown how its frame can be presented by generators and relations as a dcpo. A necessary and sufficient condition is derived for compactness of the locale (and also for its openness). Although its derivation uses impredicative constructions, it is also shown predicatively using the inductive generation of formal topologies. A predicative proof of the binary Tychonoff theorem is given, including a characterization of the finite covers of the product by basic opens. The discussion is then related to the double powerlocale.