Results 1  10
of
19
Topical Categories of Domains
, 1997
"... this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2 ..."
Abstract

Cited by 19 (18 self)
 Add to MetaCart
this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2
Constructive points of Powerlocales
 Math. Proc. Cambridge Philos. Soc
, 1995
"... Results of Bunge and Funk and of Johnstone, providing constructively sound descriptions of the global points of the lower and upper powerlocales, are extended here to describe the generalized points and proved in a way that displays in a symmetric fashion two complementary treatments of frames: as s ..."
Abstract

Cited by 16 (10 self)
 Add to MetaCart
Results of Bunge and Funk and of Johnstone, providing constructively sound descriptions of the global points of the lower and upper powerlocales, are extended here to describe the generalized points and proved in a way that displays in a symmetric fashion two complementary treatments of frames: as suplattices and as preframes. We then also describe the points of the Vietoris powerlocale. In each of two special cases, an exponential $ D ($ being the Sierpinsky locale) is shown to be homeomorphic to a powerlocale: to the lower powerlocale when D is discrete, and to the upper powerlocale when D is compact regular. 1
Formal Topology and Constructive Mathematics: the Gelfand and StoneYosida Representation Theorems
 Journal of Universal Computer Science
, 2005
"... Abstract. We present a constructive proof of the StoneYosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for falgebras. In turn, this theorem implies the Gelfand representation theorem for C*alge ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
Abstract. We present a constructive proof of the StoneYosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for falgebras. In turn, this theorem implies the Gelfand representation theorem for C*algebras of operators on Hilbert spaces as formulated by Bishop and Bridges. Our proof is shorter, clearer, and we avoid the use of approximate eigenvalues.
A Topos for Algebraic Quantum Theory
 COMMUNICATIONS IN MATHEMATICAL PHYSICS
, 2009
"... The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*algebra of observables A induces a topos T (A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*algebra A. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum �(A) in T (A), which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topostheoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on �, and selfadjoint elements of A define continuous functions (more precisely, locale maps) from � to Scott’s interval domain. Noting that open subsets of �(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T (A). These results were inspired by the topostheoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.
Geometric and higher order logic in terms of abstract Stone duality
 THEORY AND APPLICATIONS OF CATEGORIES
, 2000
"... The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this equation implies that Σ classifies some class of monos, and the Frobenius law ∃x.(φ(x) ∧ ψ) =(∃x.φ(x)) ∧ ψ) for the existential quantifier. In topology, the lattice duals of these equations also hold, and are related to the Phoa principle in synthetic domain theory. The natural definitions of discrete and Hausdorff spaces correspond to equality and inequality, whilst the quantifiers considered as adjoints characterise open (or, as we call them, overt) and compact spaces. Our treatment of overt discrete spaces and open maps is precisely dual to that of compact Hausdorff spaces and proper maps. The category of overt discrete spaces forms a pretopos and the paper concludes with a converse of Paré’s theorem (that the contravariant powerset functor is monadic) that characterises elementary toposes by means of the monadic and Euclidean properties together with all quantifiers, making no reference to subsets.
Compactness in locales and in formal topology
 ANNALS OF PURE AND APPLIED LOGIC 137 (2006), PP. 413–438
, 2006
"... If a locale is presented by a “flat site”, it is shown how its frame can be presented by generators and relations as a dcpo. A necessary and sufficient condition is derived for compactness of the locale (and also for its openness). Although its derivation uses impredicative constructions, it is also ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
If a locale is presented by a “flat site”, it is shown how its frame can be presented by generators and relations as a dcpo. A necessary and sufficient condition is derived for compactness of the locale (and also for its openness). Although its derivation uses impredicative constructions, it is also shown predicatively using the inductive generation of formal topologies. A predicative proof of the binary Tychonoff theorem is given, including a characterization of the finite covers of the product by basic opens. The discussion is then related to the double powerlocale.
The Constructive Lift Monad
 Informix Software, Inc
, 1995
"... ut by applying T to some poset (namely the original poset less the bottom). Both these properties fail to hold constructively, if the lift monad is interpreted as "adding a bottom"; see Remark below. If, on the other hand, we interpret the lift monad as the one which freely provides supre ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
ut by applying T to some poset (namely the original poset less the bottom). Both these properties fail to hold constructively, if the lift monad is interpreted as "adding a bottom"; see Remark below. If, on the other hand, we interpret the lift monad as the one which freely provides supremum for each subset with at most one element (which is what we shall do), then the first property holds; and we give a necessary and sufficient condition that the second does. Finally, we shall investigate the lift monad in the context of (constructive) locale theory. I would like to thank Bart Jacobs for guiding me to the litterature on Zsystems; to Gonzalo Reyes for calling my attention to Barr's work on totally connected spaces; to Steve Vickers for some pertinent correspondence. I would like to thank the Netherlands Science Organization (NWO) for supporting my visit to Utrecht, where a part of the present research was carried out, and for various travel support from
Computably based locally compact spaces
, 2003
"... ASD (Abstract Stone Duality) is a reaxiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambdacalculus. In this paper, this is shown to be equivalen ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
ASD (Abstract Stone Duality) is a reaxiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambdacalculus. In this paper, this is shown to be equivalent to a notion of computable basis for locally compact sober spaces or locales, involving a family of open subspaces and accompanying family of compact ones. This generalises Smyth’s effectively given domains and Jung’s Strong proximity lattices. Part of the data for a basis is the inclusion relation of compact subspaces within open ones, which is formulated in locale theory as the waybelow relation on a continuous lattice. The finitary properties of this relation are characterised here, including the Wilker condition for the cover of a compact space by two open ones. The real line is used as a running example, being closely related to Scott’s domain of intervals. ASD does not use the category of sets, but the full subcategory of overt discrete objects plays this role; it is an arithmetic universe (pretopos with lists). In particular, we use this subcategory to translate computable bases for classical spaces into objects in the ASD calculus.
Regular Universes and Formal Spaces
 Ann. Pure Appl. Logic
, 2002
"... We present an alternative solution to the problem of inductive generation of covers in formal topology by using a restricted form of type universes. These universes are at the same time constructive analogues of regular cardinals and sets of infinitary formulae. ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
We present an alternative solution to the problem of inductive generation of covers in formal topology by using a restricted form of type universes. These universes are at the same time constructive analogues of regular cardinals and sets of infinitary formulae.