Results 1 
4 of
4
Decisiontheoretic specification of credal networks: a unified language for uncertain modeling with sets of Bayesian networks
 International Journal of Approximate Reasoning
"... Credal networks are models that extend Bayesian nets to deal with imprecision in probability, and can actually be regarded as sets of Bayesian nets. Credal nets appear to be powerful means to represent and deal with many important and challenging problems in uncertain reasoning. We give examples to ..."
Abstract

Cited by 15 (8 self)
 Add to MetaCart
Credal networks are models that extend Bayesian nets to deal with imprecision in probability, and can actually be regarded as sets of Bayesian nets. Credal nets appear to be powerful means to represent and deal with many important and challenging problems in uncertain reasoning. We give examples to show that some of these problems can only be modeled by credal nets called nonseparately specified. These, however, are still missing a graphical representation language and updating algorithms. The situation is quite the opposite with separately specified credal nets, which have been the subject of much study and algorithmic development. This paper gives two major contributions. First, it delivers a new graphical language to formulate any type of credal network, both separately and nonseparately specified. Second, it shows that any nonseparately specified net represented with the new language can be easily transformed into an equivalent separately specified net, defined over a larger domain. This result opens up a number of new outlooks and concrete outcomes: first of all, it immediately enables the existing algorithms for separately specified credal nets to be applied to nonseparately specified ones. We explore this possibility for the 2U algorithm: an algorithm for exact updating of singly connected credal nets, which is extended by our results to a class of nonseparately specified models. We also consider the problem of inference on Bayesian networks, when the reason that prevents some of the variables from being observed is unknown. The problem is first reformulated in the new graphical language, and then mapped into an equivalent problem on a separately specified net. This provides a first algorithmic approach to this kind of inference, which is also proved to be NPhard by similar transformations based on our formalism.
Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification
, 2010
"... Bayesian network are powerful probabilistic graphical models for modelling uncertainty. Among others, classification represents an important application: some of the most used classifiers are based on Bayesian networks. Bayesian networks are precise models: exact numeric values should be provided fo ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Bayesian network are powerful probabilistic graphical models for modelling uncertainty. Among others, classification represents an important application: some of the most used classifiers are based on Bayesian networks. Bayesian networks are precise models: exact numeric values should be provided for quantification. This requirement is sometimes too narrow. Sets instead of single distributions can provide a more realistic description in these cases. Bayesian networks can be generalized to cope with sets of distributions. This leads to a novel class of imprecise probabilistic graphical models, called credal networks. In particular, classifiers based on Bayesian networks are generalized to socalled credal classifiers. Unlike Bayesian classifiers, which always detect a single class as the one maximizing the posterior class probability, a credal classifier may eventually be unable to discriminate a single class. In other words, if the available information is not sufficient, credal classifiers allow for indecision between two or more classes, this providing a less informative but more robust conclusion than Bayesian classifiers.
C.P.: A treeaugmented classifier based on Extreme Imprecise Dirichlet Model
 International Journal of Approximate Reasoning
"... In this paper we present TANC, i.e., a treeaugmented naive credal classifier based on imprecise probabilities; it models prior nearignorance via the Extreme Imprecise Dirichlet Model (EDM) [1] and deals conservatively with missing data in the training set, without assuming them to be missingatra ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In this paper we present TANC, i.e., a treeaugmented naive credal classifier based on imprecise probabilities; it models prior nearignorance via the Extreme Imprecise Dirichlet Model (EDM) [1] and deals conservatively with missing data in the training set, without assuming them to be missingatrandom. The EDM is an approximation of the global Imprecise Dirichlet Model (IDM), which considerably simplifies the computation of upper and lower probabilities; yet, having been only recently introduced, the quality of the provided approximation needs still to be verified. As first contribution, we extensively compare the output of the naive credal classifier (one of the few cases in which the global IDM can be exactly implemented) when learned with the EDM and the global IDM; the output of the classifier appears to be identical in the vast majority of cases, thus supporting the adoption of the EDM in real classification problems. Then, by experiments we show that TANC is more reliable than the precise TAN (learned with uniform prior), and also that it provides better performance compared to a previous [13] TAN model based on imprecise probabilities. TANC treats missing data by considering all possible completions of the training set, but avoiding an exponential increase of the computational times; eventually, we present some preliminary results with missing data.
A tree augmented classifier based on Extreme Imprecise Dirichlet Model
"... We present TANC, a TAN classifier (treeaugmented naive) based on imprecise probabilities. TANC models prior nearignorance via the Extreme Imprecise Dirichlet Model (EDM). A first contribution of this paper is the experimental comparison between EDM and the global Imprecise Dirichlet Model using th ..."
Abstract
 Add to MetaCart
We present TANC, a TAN classifier (treeaugmented naive) based on imprecise probabilities. TANC models prior nearignorance via the Extreme Imprecise Dirichlet Model (EDM). A first contribution of this paper is the experimental comparison between EDM and the global Imprecise Dirichlet Model using the naive credal classifier (NCC), with the aim of showing that EDM is a sensible approximation of the global IDM. TANC is able to deal with missing data in a conservative manner by considering all possible completions (without assuming them to be missingatrandom), but avoiding an exponential increase of the computational time. By experiments on real data sets, we show that TANC is more reliable than the Bayesian TAN and that it provides better performance compared to previous TANs based on imprecise probabilities. Yet, TANC is sometimes outperformed by NCC because the learned TAN structures are too complex; this calls for novel algorithms for learning the TAN structures, better suited for an imprecise probability classifier. 1.