Results 1  10
of
550
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the twoclass problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most...
Matching pursuits with timefrequency dictionaries
 IEEE Transactions on Signal Processing
, 1993
"... AbstractWe introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures t ..."
Abstract

Cited by 1654 (13 self)
 Add to MetaCart
(Show Context)
AbstractWe introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive timefrequency transform. We derive a signal energy distribution in the timefrequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. We compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser. I.
A fast learning algorithm for deep belief nets
 Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract

Cited by 930 (51 self)
 Add to MetaCart
(Show Context)
We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that finetunes the weights using a contrastive version of the wakesleep algorithm. After finetuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The lowdimensional manifolds on which the digits lie are modelled by long ravines in the freeenergy landscape of the toplevel associative memory and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind. 1
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract

Cited by 916 (8 self)
 Add to MetaCart
(Show Context)
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representation of an exactly sparse signal. It leverages this theory to show that both OMP and BP succeed for every sparse input signal from a wide class of dictionaries. These quasiincoherent dictionaries offer a natural generalization of incoherent dictionaries, and the cumulative coherence function is introduced to quantify the level of incoherence. This analysis unifies all the recent results on BP and extends them to OMP. Furthermore, the paper develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal. From there, it argues that OMP is an approximation algorithm for the sparse problem over a quasiincoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms.
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 568 (23 self)
 Add to MetaCart
(Show Context)
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 396 (33 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Sliced inverse regression for dimension reduction
 J. AMER. STATIST. ASSOC
, 1991
"... ..."
(Show Context)
Independent Factor Analysis
 Neural Computation
, 1999
"... We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square no ..."
Abstract

Cited by 274 (9 self)
 Add to MetaCart
(Show Context)
We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square noiseless mixing, but also the general case where the number of mixtures differs from the number of sources and the data are noisy. IFA is a twostep procedure. In the first step, the source densities, mixing matrix and noise covariance are estimated from the observed data by maximum likelihood. For this purpose we present an expectationmaximization (EM) algorithm, which performs unsupervised learning of an associated probabilistic model of the mixing situation. Each source in our model is described by a mixture of Gaussians, thus all the probabilistic calculations can be performed analytically. In the second step, the sources are reconstructed from the observed data by an optimal nonlinear ...