Results 1  10
of
22
Minimum Cuts and Shortest Homologous Cycles
 SYMPOSIUM ON COMPUTATIONAL GEOMETRY
, 2009
"... We describe the first algorithms to compute minimum cuts in surfaceembedded graphs in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, our algorithm computes a minimum (s, t)cut in g O(g) n log n time. Except for the spec ..."
Abstract

Cited by 25 (10 self)
 Add to MetaCart
(Show Context)
We describe the first algorithms to compute minimum cuts in surfaceembedded graphs in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, our algorithm computes a minimum (s, t)cut in g O(g) n log n time. Except for the special case of planar graphs, for which O(n log n)time algorithms have been known for more than 20 years, the best previous time bounds for finding minimum cuts in embedded graphs follow from algorithms for general sparse graphs. A slight generalization of our minimumcut algorithm computes a minimumcost subgraph in every Z2homology class. We also prove that finding a minimumcost subgraph homologous to a single input cycle is NPhard.
Homology flows, cohomology cuts
 ACM SYMPOSIUM ON THEORY OF COMPUTING
, 2009
"... We describe the first algorithms to compute maximum flows in surfaceembedded graphs in nearlinear time. Specifically, given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, we can compute a maximum (s, t)flow in O(g 7 n log 2 n log 2 C) time fo ..."
Abstract

Cited by 22 (9 self)
 Add to MetaCart
(Show Context)
We describe the first algorithms to compute maximum flows in surfaceembedded graphs in nearlinear time. Specifically, given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, we can compute a maximum (s, t)flow in O(g 7 n log 2 n log 2 C) time for integer capacities that sum to C, or in (g log n) O(g) n time for real capacities. Except for the special case of planar graphs, for which an O(n log n)time algorithm has been known for 20 years, the best previous time bounds for maximum flows in surfaceembedded graphs follow from algorithms for general sparse graphs. Our key insight is to optimize the relative homology class of the flow, rather than directly optimizing the flow itself. A dual formulation of our algorithm computes the minimumcost cycle or circulation in a given (real or integer) homology class.
Polynomialtime approximation schemes for subsetconnectivity problems in boundedgenus graphs
, 2009
"... We present the first polynomialtime approximation schemes (PTASes) for the following subsetconnectivity problems in edgeweighted graphs of bounded genus: Steiner tree, lowconnectivity survivablenetwork design, and subset TSP. The schemes run in O(n log n) time for graphs embedded on both orien ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
(Show Context)
We present the first polynomialtime approximation schemes (PTASes) for the following subsetconnectivity problems in edgeweighted graphs of bounded genus: Steiner tree, lowconnectivity survivablenetwork design, and subset TSP. The schemes run in O(n log n) time for graphs embedded on both orientable and nonorientable surfaces. This work generalizes the PTAS frameworks of Borradaile, Klein, and Mathieu [BMK07, Kle06] from planar graphs to boundedgenus graphs: any future problems shown to admit the required structure theorem for planar graphs will similarly extend to boundedgenus graphs.
Many distances in planar graphs
 In SODA ’06: Proc. 17th Symp. Discrete algorithms
, 2006
"... We show how to compute in O(n 4/3 log 1/3 n+n 2/3 k 2/3 logn) time the distance between k given pairs of vertices of a planar graph G with n vertices. This improves previous results whenever (n/logn) 5/6 ≤ k ≤ n 2 /log 6 n. As an application, we speed up previous algorithms for computing the dilatio ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
(Show Context)
We show how to compute in O(n 4/3 log 1/3 n+n 2/3 k 2/3 logn) time the distance between k given pairs of vertices of a planar graph G with n vertices. This improves previous results whenever (n/logn) 5/6 ≤ k ≤ n 2 /log 6 n. As an application, we speed up previous algorithms for computing the dilation of geometric planar graphs. 1
Finding shortest nontrivial cycles in directed graphs on surfaces
 In These Proceedings
, 2010
"... Let D be a weighted directed graph cellularly embedded in a surface of genus g, orientable or not, possibly with boundary. We describe algorithms to compute a shortest noncontractible and a shortest surface nonseparating cycle in D. This generalizes previous results that only dealt with undirected ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
(Show Context)
Let D be a weighted directed graph cellularly embedded in a surface of genus g, orientable or not, possibly with boundary. We describe algorithms to compute a shortest noncontractible and a shortest surface nonseparating cycle in D. This generalizes previous results that only dealt with undirected graphs. Our first algorithm computes such cycles in O(n 2 log n) time, where n is the total number of vertices and edges of D, thus matching the complexity of the best known algorithm in the undirected case. It revisits and extends Thomassen’s 3path condition; the technique applies to other families of cycles as well. We also give an algorithm with subquadratic complexity in the complexity of the input graph, if g is fixed. Specifically, we can solve the problem in O ( √ g n 3/2 log n) time, using a divideandconquer technique that simplifies the graph while preserving the topological properties of its cycles. A variant runs in O(ng log g + nlog 2 n) for graphs of bounded treewidth.
Multiplesource shortest paths in embedded graphs
, 2012
"... Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of f to any other vertex in G can be retrieved in O(log n) time. Our result directly generalizes the O(n log n)time algorithm of Klein [Multiplesource shortest paths in planar graphs. In Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms, 2005] for multiplesource shortest paths in planar graphs. Intuitively, our preprocessing algorithm maintains a shortestpath tree as its source point moves continuously around the boundary of f. As an application of our algorithm, we describe algorithms to compute a shortest noncontractible or nonseparating cycle in embedded, undirected graphs in O(g² n log n) time.
Maximum Flows and Parametric Shortest Paths in Planar Graphs
"... We observe that the classical maximum flow problem in any directed planar graph G can be reformulated as a parametric shortest path problem in the oriented dual graph G ∗. This reformulation immediately suggests an algorithm to compute maximum flows, which runs in O(n log n) time. As we continuously ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
(Show Context)
We observe that the classical maximum flow problem in any directed planar graph G can be reformulated as a parametric shortest path problem in the oriented dual graph G ∗. This reformulation immediately suggests an algorithm to compute maximum flows, which runs in O(n log n) time. As we continuously increase the parameter, each change in the shortest path tree can be effected in O(log n) time using standard dynamic tree data structures, and the special structure of the parametrization implies that each directed edge enters the evolving shortest path tree at most once. The resulting maximumflow algorithm is identical to the recent algorithm of Borradaile and Klein [J. ACM 2009], but our new formulation allows a simpler presentation and analysis. On the other hand, we demonstrate that for a similarly structured parametric shortest path problem on the torus, the shortest path tree can change Ω(n²) times in the worst case, suggesting that a different method may be required to efficiently compute maximum flows in highergenus graphs.
LinearSpace Approximate Distance Oracles for Planar, BoundedGenus, and MinorFree Graphs
"... Abstract. A (1 + ɛ)approximate distance oracle for a graph is a data structure that supports approximate pointtopoint shortestpathdistance queries. The relevant measures for a distanceoracle construction are: space, query time, and preprocessing time. There are strong distanceoracle construct ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Abstract. A (1 + ɛ)approximate distance oracle for a graph is a data structure that supports approximate pointtopoint shortestpathdistance queries. The relevant measures for a distanceoracle construction are: space, query time, and preprocessing time. There are strong distanceoracle constructions known for planar graphs (Thorup) and, subsequently, minorexcluded graphs (Abraham and Gavoille). However, these require Ω(ɛ −1 n lg n) space for nnode graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, boundedgenus graphs, and minorexcluded graphs we give distanceoracle constructions that require only
Global Minimum Cuts in Surface Embedded Graphs
"... We give a deterministic algorithm to find the minimum cut in a surfaceembedded graph in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, our algorithm computes the minimum cut in g O(g) n log log n time, matching the running time of the fastest algorithm kno ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
(Show Context)
We give a deterministic algorithm to find the minimum cut in a surfaceembedded graph in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, our algorithm computes the minimum cut in g O(g) n log log n time, matching the running time of the fastest algorithm known for planar graphs, due to Ł ˛acki and Sankowski, for any constant g. Indeed, our algorithm calls Ł ˛acki and Sankowski’s recent O(n log log n) time planar algorithm as a subroutine. Previously, the best time bounds known for this problem followed from two algorithms for general sparse graphs: a randomized algorithm of Karger that runs in O(n log 3 n) time and succeeds with high probability, and a deterministic algorithm of Nagamochi and Ibaraki that runs in O(n 2 log n) time. We can also achieve a deterministic g O(g) n 2 log log n time bound by repeatedly applying the best known algorithm for minimum (s, t)cuts in surface graphs. The bulk of our work focuses on the case where the dual of the minimum cut splits the underlying surface into multiple components with positive genus. 1
Accelerated bend minimization
, 2012
"... We present an O(n 3/2) algorithm for minimizing the number of bends in an orthogonal drawing of a plane graph. It has been posed as a long standing open problem at Graph Drawing 2003, whether the bound of O(n 7/4 √ log n) shown by Garg and Tamassia in 1996 could be improved. To answer this question, ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We present an O(n 3/2) algorithm for minimizing the number of bends in an orthogonal drawing of a plane graph. It has been posed as a long standing open problem at Graph Drawing 2003, whether the bound of O(n 7/4 √ log n) shown by Garg and Tamassia in 1996 could be improved. To answer this question, we show how to solve the uncapacitated mincost flow problem on a planar bidirected graph with bounded costs and face sizes in O(n 3/2) time.